

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CNR-SPIN (Genova, Italy)

HYBRID JOSEPHSON JUNCTIONS BASED ON InSb NANOFLAGS

Dr. Matteo Carrega

Outline

- InSb nanoflags for advanced devices
- InSb nanoflag Josephson junctions
- Superconducting diode in a single Josephson junction
- SQUID based on InSb nanoflags

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantum Technologies

Low temperature superconducting electronics

InSb semiconductor

Why InSb?

- ▶ narrow bandgap $0.23eV \rightarrow mid-IR$ optoelectronics
- high bulk mobility 7.7 · 10⁴ cm²/(Vs) → high-speed electronic devices
- ▶ small effective mass $m = 0.018 m_e \rightarrow$ low power electronic devices
- ▶ strong spin orbit interactions $E_{SOI} \sim 200 \mu \text{eV} g \sim 50 \rightarrow$ spintronics and topological devices

InSb nanoflags

InSb: challenging to grow 2D quantum wells \rightarrow novel approach: 2D nanoflags

Tapered nanowires are used as stems

- length $\sim 2\mu$ m
- \blacktriangleright width \sim 700nm
- tickness ~ 100nm

Verma et al. ACS Appl. Nano Mater. 2021

- defect-free structure
- mobility ~ 29500cm²/(Vs)
- > mean free path $I_e \sim 500$ nm

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

InSb Josephson junctions

InSb nanoflag SNS devices

- Nb superconducting contacts $\Delta \sim 1.3 \text{meV} \rightarrow \Delta^* \sim 250 \mu \text{eV}$
- \bullet length \sim 200nm and width \sim 700nm
- ballistic regime $I \ll I_e$
- high transparency $\tau\sim 0.9$

Salimian APL 2021, Turini NanoLetters 2022

Diodes

The pn junction is at the basis of conventional electronics

Is it possible to obtain an analog for superconducting circuits? Breaking of both time-reversal and inversion symmetry!

SDE experiments

Article **Observation of superconducting diode effect** https://doi.org/10.1038/s41585-020-2590-4 Fuyuki Ando², Yuta Miyasaka⁴, Tian L², Jun Ishizuka², Tomonori Azakowa^{3,4}, Yoichi Shiota³, Takahiro Moriyema', Youichi Yanase¹ & Teruo Ono¹⁴ Received: 14 March 2020 Accepted: 23 June 2020 Nonlinear optical and electrical effects associated with a lack of spatial inversion Published online: 19 August 2020 symmetry allow direction-selective propagation and transport of quantum particles, Check for updates

such as photons¹ and electrons²⁻⁹. The most common example of such nonreciprocal

F. Ando et al., Nature 584 (2020) 373.

nature ARTICLES nanotechnology https://doi.org/10.1038/s41565-021-01009-9 (R) Check for update Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions Christian Baumgartner¹⁸, Lorenz Fuchs¹⁸, Andreas Costa², Simon Reinhardt¹, Sergel Gronin³⁴, Geoffrey C. Gardner 014, Tyler Lindemann45, Michael J. Manfra 024547, Paulo E. Faria Junior², Denis Kochan², Jaroslav Fabian^{©2}, Nicola Paradiso^{®155} and Christoph Strunk^{®1}

C. Baumgartner et al., Nat. Nano 17 (2022) 39.

SDE in a single Josephson junction

InSb nanoflag planar Josephson junction

▲□▶▲□▶▲□▶▲□▶ □ のQの

need for a planar B field

Turini et al NanoLetters 2022

Josephson diode effect

Supercurrent at 30mK I_{SW}^{\pm} switching current in opposite bias directions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

JDE is driven by magnetic field!

Turini et al, Nanoletters 2022

Supercurrent asymmetry

$$\Delta I_{SW} = I_{SW}^+ - |I_{SW}^-|$$

in-plane B_{ip} field dependence

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

- ▶ anti-symmetric in *B*
- linear behaviour around B = 0
- rounded maxima
- suppression above ~ 20mT

Turini et al, NanoLetters 2022

Angle dependence

JDE depends on the planar angle $\theta \rightarrow \mathsf{Rashba} \mathsf{SOI}$

(日) (四) (日) (日) (日)

linear coefficient $m \propto \sin(\theta)$

Turini et al, NanoLetters 2022

Extrinsic parameters

JDE temperature dependence

JDE gate-voltage dependence

Turini et al, NanoLetters 2022

JDE interpretation

- ballistic and short junction regime
- dominant Rashba SOI
- finite momentum pairing $q = g \mu_B B / v_F$
- high transparency $\tau \rightarrow$ skewed CPR

SQUID based on InSb nanoflags

How to inspect the CPR content?

SQUID with different geometries

(日) (四) (日) (日) (日)

 $A_{\text{geo}}^{\text{sym}} = 13.6 \mu \text{m}^2$ $A_{\text{geo}}^{\text{asym}} = 118 \mu \text{m}^2$

Chieppa et al, ArXiv 2025

SQUID response

$$I_{\mathsf{C}, \mathsf{SQUID}} = \operatorname{Max}_{\varphi} \left[I_1(\varphi) + I_2(\varphi - 2\pi \frac{\Phi}{\Phi_0}) \right]$$

Interference patterns in the symmetric geometry

High transparency τ at high $V_{\rm bg}$

Chieppa et al, ArXiv (2025)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Numerical simulations

Effective two band model for InSb

$$\mathcal{H}(\vec{k}) = \left(\frac{\hbar^2 \vec{k}^2}{2m^*} - \mu\right) \sigma_0 - \alpha_R k_y \sigma_x + \alpha_R k_x \sigma_y + \frac{g\mu_B}{2} B\sigma_z$$

 \bullet Bogoliubov-de Gennes formalism with Δ induced SC gap

- Tight-binding simulation
- SQUID geometry with two parallel Josephson junctions
- Recursive Green function method

Chieppa et al, ArXiv (2025)

Skewed CPR

CPR of a single junction with different $V_{\rm bg}$ Major skewness at high back-gate

JJ transparency modulated with $V_{\rm bg}$

$$\tau = \frac{1}{1+z^2(V_{\rm bg})}$$

(日)

э

Chieppa et al, ArXiv (2025)

Conclusions

- InSb nanoflag based Josephson junction
- Josephson diode effect
- SQUID based on InSb nanoflags
- High harmonic contents and skewed CPRs

B. Turini et al, NanoLetters 22, 8502 (2022)

A. Chieppa et al., ArXiv:2504.**** (2025)

Collaborations and projects

- CNR-NANO: S. Heun, L. Sorba, F. Giazotto, E. Strambini, V. Zannier, I. Verma, A. Crippa, S. Salimian, A. Iorio, B. Turini, A. Chieppa
- Univ. Genova: M. Sassetti, N. Traverso Ziani, S. Traverso, S. Fracassi

Project PRIN 2022 (MUR, Italy): "Topoflags"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで