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Abstract

In mesoscopic physics, interference effects play a relevant role in determining the
behavior and the transport properties of quantum devices. Among all, interference phe-
nomena are of particular importance in the context of superconducting systems. Indeed,
superconducting quantum interference devices, known as SQUIDs, have found several
applications in magnetometry, scanning probe microscopies, and more recently quan-
tum computing. Besides, SQUIDs in the strongly asymmetric geometry are useful to
investigate fundamental properties of Josephson junctions, for instance to extract the
Current Phase Relationship (CPR).

In this master thesis, we report the first fabrication and characterization of SQUIDs
made with InSb nanoflag-based Josephson junctions. The two arms of the SQUIDs are
composed of two superconducting-normal-superconducting junctions, where the nor-
mal part is a single InSb nanoflag, a semiconductor with strong spin-orbit coupling and
with quasi-2D electronic transport. Making use of the elongated shape of the nanoflags,
both symmetric and asymmetric SQUID geometries are realized. Characterization at low
temperature is performed by magneto transport measurements, showing supercurrent
interference for various values of temperature and back gate.

Interference can be controlled by the back gate, which allows to tune from partial
or total destructive interference. An additional tuning knob is the applied perpendicu-
lar magnetic field, which allows to choose an optimal working point. In the symmetric
geometry, the typical SQUID interference pattern is observed. In the asymmetric ge-
ometry, the two nanoflags respond differently to the global back gate. This enables the
suppression of the supercurrent in one junction at a time, allowing for the observation
of no interference as the supercurrent in one arm is extinguished.
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Introduction

Motivation

In recent years, quantum technologies have seen an incredible development pushed
by the ever-increasing need for improvement of the performance of quantum devices.
Superconducting electronics promises such improvements, with many applications in a
large variety of fields.

One important area of research is the field of quantum computation. Quantum com-
puting aims at solving problems that classical computation cannot overcome, by taking
advantage of the quantum superposition of two logic states [1]. Although quantum com-
puters and quantum bits have already been demonstrated, they are subject to noise and
decoherence caused by the environment, making them highly prone to errors. To miti-
gate this problem, one approach is to use topological states as logic states, which would
lead to a more robust and fault-tolerant quantum computation[2].

A possible platform for implementing this method of topologically protected quan-
tum computation are superconductor-semiconductor hybrids, but to drive the system in
a topological phase several requirements must be met [3]. If the superconductor possess
an s-wave pairing symmetry, the semiconducting material should possess a large spin-
orbit interaction [4], while a large Landè g factor would be needed to limit the magnetic
field at which the transition to the topological phase happens.

Among the variety of semiconductors, some materials are natural candidates like
InAs [5], HgTe [6] or InSb [7, 8]. To this end, the InSb nanoflag, the semiconduct-
ing material used in this thesis, offers the two-dimensional platform with large spin-
orbit interaction and large Landè g factor. Previously, the group reported ballistic InSb
nanoflags-based Josephson junctions [9], which exhibited intriguing phenomena such
as half-integer Shapiro steps and the superconducting diode effect [10, 11].

To explain these observations, a non-sinusoidal current-phase relationship (CPR) has
been proposed. However, to date, no measurement of the CPR has been performed and
remains an open problem to be addressed experimentally. Proposals on how to probe
the CPR involve the use of Superconducting Quantum Interference Devices (SQUIDs) in
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strongly asymmetric configurations [12, 13]. In these setups, it is possible to separate
the contribution of each junction to the total supercurrent, allowing to understand the
behavior of the CPR as a function of different variables. Other approaches involve the
use of SQUIDs and tunneling spectroscopy to examine the energy spectrum to obtain a
indirect reconstruction of the CPR [14].

Because of this, there is lot of interest in investigating InSb nanoflags with SQUIDs.
In fact, the investigations of superconducting quantum effects was prevalently done on
single junctions [15] and SQUIDs with two-dimensional nanostructures of InSb have not
been reported yet.

Motivated by these arguments, in this thesis I investigate dc-SQUIDs based on InSb
nanoflags. The thesis is structured in the following way:

• In Chapter 2, the theoretical background is provided.

• In Chapter 3, the experimental setup is described, from the fabrication steps to the
details of the measurements.

• In Chapter 4, the main results of this work are presented.

• Chapter 5 concludes the thesis with a comment on the future perspectives.

These chapters are further supported by two appendices. In Appendix A the algo-
rithm used to extract the values of the critical current from the VI curves is discussed.
In Appendix B the details of the numerical simulations are provided.
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2

Theoretical Background

2.1 Semiconductors

This section focuses on summarizing the properties of semiconducting systems that
are needed in the understanding of the physics presented in the experimental part. Semi-
conductors are crystalline materials in which electrons occupy energy levels grouped
together in energy bands. From low to high energy and at zero temperature, the last
occupied energy band is called valence band, while the first empty band is called conduc-
tion band. These two bands are separated in energy by the band-gap, the lowest energy
scale needed to excite one electron from the valence to the conduction band.

The semiconducting system used in this thesis is Indium Antimonide (InSb), a ma-
terial that at zero temperature has a small band gap of 0.24 eV and crystallize in a zinc-
blende structure. Fig. 2.1 shows a schematic of the band structure of bulk InSb at room
temperature.

One remarkable property of semiconducting materials is that when electrons are
excited near the bottom of the conduction band (by thermal excitation or other means),
the role of the crystal is to renormalize the mass of these carriers in such a way that they

Figure 2.1: InSb band structure at 300K. Source: [16].
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behave as having a different, effective, mass m∗. For an infinite semiconductor, within
the effective mass approximation, the energy of the electrons near the bottom of the
conduction band is described in k-space by:

E(k⃗) =
ℏ2

2m∗
x

k2x +
ℏ2

2m∗
y

k2y +
ℏ2

2m∗
z

k2z (2.1)

2.1.1 Two-dimensional systems

The semiconducting system presented in this thesis is a two-dimensional nanostruc-
ture of InSb. To show two-dimensional behavior, the motion of the system in one di-
rection (e.g., z) must be highly quantized. Consider an electron system in a box whose
energy is described by eq. 2.1, and with the lowest de-Broglie wavelength, the Fermi
wavelength λF , which is much larger than the confinement direction length, Lz . If the
size of the box1 is reduced such that Lx, Ly ≫ Lz then the momentum states in the
plane kx,y = 2π/Lx,y will be continuous with respect to those in the perpendicular di-
rection, where motion will be highly quantized. In this sense, the system behaves as
two-dimensional, as little perturbations will fill the in-plane momentum states before
exciting the momentum states in the z direction, producing a confinement in one direc-
tion. Confinement in these systems results in the formation of what are called subbands
which are shown schematically in Fig. 2.2.

Figure 2.2: Electronic two-dimensional subbands in reciprocal space. Adapted from [17]

Not always λF ≫ Lz , and many systems, like the one used in this thesis, are in a
situation where λF ≃ Lz . In this case, the system is considered in a a quasi-2D regime.

1A more correct formulation is uses the Schrodinger equation for the envelope function of the elec-
trons, in which the confinement potential is given by the vacuum level, but the qualitative picture is the
same.
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2.1.2 Interfaces & Metals
Experimental work with semiconductors consists in applying voltages and measur-

ing currents, which requires Ohmic contacts. Connecting the experimental apparatus
to the semiconductor under study is not a trivial problem, as metal connections to the
semiconductor are needed, which can result in Ohmic or Schottky contacts. In addition
to that, the semiconductor interface is typically not perfect, and complicated by the pres-
ence of Fermi level pinning (Fig. 2.3).

Figure 2.3: Adapted from
[18]. (a) No Fermi level
pinning (b) p-type semi-
conductor presenting
Fermi level pinning due
to surface states, with
downward bending of the
electronic bands.

Defects on the semiconductor surface, as well as the
surface band structure (if present) modify the local electro-
statics, causing band-bending in proximity to the interface.
When Ohmic contacts are obtained, they show linear char-
acteristics, and because of this they can be characterized by
the contact resistance Rc, specific to the interface.

2.1.3 Mobility
The mobility µ represent the response of carriers with

charge q to external fields, and is introduced as the propor-
tionality constant between the drift velocity v and the elec-
tric field E⃗. It is a very important parameter, as in the ef-
fective mass approximation it allows to estimate the elastic
scattering time τ = q/(µm∗) and the mean free path lmfp:

lmfp = vF τ, (2.2)

where vF is the Fermi velocity. The mean free path can
be used to understand if in a certain length the transport
regime of the device is diffusive, ballistic, or in a cross-over
situation between the two limits. Strictly speaking, when
a semiconducting transport channel with length L is bal-
listic, the "classic" mobility is not defined, but it can still be
identified an effective mobility from experimental measure-
ments. From this point of view, different methods are used
to estimate the mobility, from Hall effect measurements to
field-effects measurements. The last method uses the action

of an external gate electrode to control the charge inside the semiconducting channel.

2.1.4 Back gate modulation
Control of the chemical potential in the semiconductor can be achieved by a ca-

pacitive coupling to a metallic gate. There are different types of gate electrodes, and the
common factor is the use of electric fields to modify the electro-chemical potential distri-
bution in the space, locally or globally. The naming of a gate electrode is done according
to its position with respect to the semiconducting channel (top, bottom, side gates). In
this thesis due to the fabrication steps, the gate electrode is positioned under the semi-
conductor and is called back gate. The specific relation between the charge inside the
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semiconductor and the back gate voltage requires precise and accurate modeling, as the
specific capacitance of the system should be calculated. In addition to that, the induced
charge will give an additional (self-)contribution to the electrostatic potential that mod-
ifies the action of the back gate, a phenomenon known as screening.

In the system under study, by modulating the electron density inside the semicon-
ductor, the role of the back gate is to modulate the transport properties of the system.
To model the back gate modulation, it is important to make some simplifications. The
system is a semiconductor nanostructure ≃ 100 nm thick coupled to a heavily doped
p-type Silicon back gate by 285 nm of SiO2. Neglecting screening effects, the charge in-
duced by the back gate is given by Q = CVbg. A simple parallel plate capacitor model is
used, where the capacitance per unit area is given by:

cox =
εε0
t
,

where ε is the dielectric constant of the oxide, and t the separation between the electron
gas and the back gate. In this way, the induced electron density can be written as:

n =
1

e
cox (Vbg − Vth) , (2.3)

where the threshold voltage Vth has been introduced that takes into account at a phe-
nomenological level the details of the band structure at the interface. An unwanted
doping near the surface between the semiconductor and the oxide can in fact deplete or
cause accumulation in the semiconductor. For the depletion, before actually inducing
charge, a nonzero voltage between the back gate and the channel has to be applied to
create flat band alignment. Numerous definitions in the literature are given for Vth, each
depending on the application [19]. In this thesis it is defined as the voltage at which the
back gate starts inducing a nonzero electron density in the channel.

To obtain an expression for the conductance of the semiconductor, expressions for
the current and the voltage drop across the device as a function of experimental variables
are needed. The semiconducting region between the source and drain electrodes–the
contacts used to inject and collect the electrical–is called the semiconducting channel,
or simply the channel. The current density between the source and the drain electrode
is:

ISD/W = e n v, (2.4)

where e is the elementary charge and v = µ E∥ is the drift velocity, proportional to
the longitudinal electric field in the channel. For a small applied voltage VSD between
source and drain, a linear voltage drop along the channel length L can be assumed, such
that E∥ = VSD/L is obtained. In this way, the back gate modulates the conductance of
the semiconducting channel G = ISD/VSD:

G = cox
W

L
µ (Vbg − Vth) , (2.5)

with a "response" that depends on the mobility. When using G vs. Vbg curves (the trans-
fer curves) to estimate the mobility, what is obtained is the field-effect mobility. As
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Figure 2.4: Schematics of an experimental setup where the effects of contact resistance
must be incorporated into the modeling.

mentioned in Sec. 2.1.3, this procedure is not strictly correct when the device is ballistic.
However it is still possible to identify an effective mobility from the transfer curves that
corresponds to the "ballistic" mobility [20, 21]:

µ =
L

Wcox

∂IDS

∂Vbg

1

VDS

Vbg represent the back gate voltage with respect to the semiconducting channel. When
doing experiments, the source and back gate electrode have common ground, evidenced
in the sketch in Fig. 2.4. Having contact resistances Rc between the source and drain
electrodes and the semiconductor, changes both the working point of the applied gate
voltage Vbg,app and the measured voltage drop VDS,meas by an amount proportional to the
current flowing.

VDS,meas = VDS + 2RcISD

Vbg,app = Vbg +RcISD

In the system under study, because of the order of magnitude of currents, contact resis-
tances, and back gate voltage, (respectively 100 nA, 100Ω and 10V) the effect is negli-
gible as it is at most O(100 µV) on applied voltages of order of V.
Instead, it is not negligible when considering the conductance of the channel, as 1/G is
the same order ofRc. In this case, to model the measured conductance, the two in-series
contact resistances need to be included [22]:

1

Gmeas.
=

(
cox

W

L
µ (Vbg − Vth)

)−1

+ 2Rc (2.6)

2.2 Superconductors

Discovered over a century ago by H. Kamerlingh Onnes, superconductivity has kept
physicist busy for decades trying to unveil its mysteries, and still today there are a great
amount of open questions. Giving a complete description of the basic theory of super-
conductivity definitely goes beyond the scope of this thesis. To give the right amount of
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space to the latest developments, I will limit myself discussing the key points of the his-
torical theories, while for a in-depth analysis of the foundations I refer to the textbooks
[23], [24].

What Onnes found was that certain metals, when cooled down to liquid Helium tem-
perature, showed a sudden drop in the electrical resistance to the current flow (Fig. 2.5).

Figure 2.5: Original data of H.
Kamerlingh Onnes, displaying
the superconducting transition
of Mercury.

Later, Meissner and Ochsenfeld discovered an addi-
tional properties of these materials: when cooled down
to low temperature, they showed a perfect diamag-
netic response. In the zero resistance state and ex-
posed to an external magnetic fiel H⃗, the samples
magnetize in a way to completely screen the mag-
netic flux density B⃗ penetrating the inside (Meissner ef-
fect).

The first two persons who gave a phenomenologi-
cal description of these two properties were the London
brothers in 1935 [25] who provided a theory that, to-
gether with Maxwell’s equations, allowed for a qualita-
tive understanding and modeling of these new "super-
conducting" materials. The model consisted in having a
current density J⃗s proportional to the vector potential
A⃗ in a specific (London) gauge.
The proportionality constant, material dependent, con-

trolled how strong the magnetic flux screening was:

J⃗s = − 1

µ0λ2L
A⃗ (2.7)

Today it is called the London penetration depth, λL.

2.2.1 Ginzburg - Landau Theory
A step forward in the understanding of superconductivity was made by V. Ginzburg

and L. Landau in 1950, who gave a theoretical treatment based on Landau’s theory of
second order phase transitions. The incredible physical intuition was to introduce a
complex order parameter ψ(x⃗), the wavefunction of the "superconducting electrons"2

and related to their density ns by:

ns(x⃗) = |ψ(x⃗)|2 (2.8)

The innovation was that the order parameter ψ, being a complex variable, was described
both by an amplitude

(√
ns

)
and by a phase. Using a variational approach on the free en-

ergy of the system F
[
ψ∗, ψ, A⃗

]
with A⃗ the vector potential, allows to write an equation

2This was the term used by Ginzburg and Landau in their original paper [26], since at that time a
microscopic picture was missing. Today we know that in bulk superconductors the transport is due to
Cooper pairs, which are vompsite bosons, and this wavefunction describes their condensate.
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for the superconducting current density (δF/δAi):

J⃗s(x⃗) =
iℏq
2m∗

(
ψ∗(x⃗)∇ψ(x⃗)− ψ(x⃗)∇ψ∗(x⃗) +

2q

iℏ
|ψ(x⃗)|2 A⃗(x⃗)

)
, (2.9)

recovering the result of the London brothers in a gauge-invariant form. Given n̂ the
normal direction to the surface of the superconductor, and M⃗ the magnetization, the
boundary conditions that n̂ ∧ M⃗ = 0⃗, and n̂ · J⃗s = 0 impose that superconducting
current flows on the surface of the superconductor and not in the bulk, where it would
produce a non-zero magnetic flux. Fitting experiments with this theory gave a value for
the charge q = −2e, but to interpret this numerical result, a microscopic theory was
needed.

2.2.2 Bardeen - Cooper - Schrieffer Theory

Figure 2.6: Original data from Maxwell
[27], showing a shift in the H vs Tc
curve between two isotopes of mercury.

Since this chapter has the scope of provid-
ing the base for an understanding of the exper-
imental results, only the essential elements of
the BCS theory are provided. The key observa-
tion prior to the Bardeen - Cooper - Schrieffer
(BCS) theory, was the discovery of the isotope
effect [27]. For two isotopes of Mercury (Fig.
2.6) a shift of the critical temperature at differ-
ent applied magnetic fields was observed, such
that:

TcM
α = cost.,

with α ≃ 0.5. This fact (plus numerous
other observations, like heat capacity mea-
surements) lead to the understanding that the interaction between the electrons and
the crystal lattice is the reason behind the superconducting transition.3 In particular,
phonons mediate an effective attractive interaction between the electrons, causing an
instability in the Fermi surface of the metal and leading to a different ground state for
the system which is not anymore a Fermi liquid.

The electrons of the system, due to the attractive interaction (pairing mechanism),
form Cooper pairs, a combination of electrons with opposite momentum and spin (pair-
ing symmetry). They are bosonic particles and can condense in one macroscopic su-
perconducting ground state |ΨS⟩. BCS models the ground state as a superposition of
Cooper pairs which can be occupied (with amplitude vk) or unoccupied (with amplitude
uk):

|ΨS⟩ =
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|0⟩ (2.10)

The single-particle excitation spectrum of the system consists of quasiparticle states of
energy Ek that are superpositions of electron and holes. The excitation gap at momen-
tum k, ∆k, is determined self consistently. The spatial extension of the Cooper pairs,

3In most materials.
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called BCS coherence length ξBCS , is derived from the uncertainty principle investigat-
ing in which region of the k-space (ξBCS ≃ 1/δk) the product of the coherence factors
ukvk is nonzero. In energy, this corresponds to a scale of∆ (the gap) around the chemical
potential:

ξBCS =
1

π

ℏvF
∆

=
1

π

ℏ2kF
m∆

(2.11)

In addition to that, for weakly coupled superconductors, it is also possible to relate the
zero-temperature gap ∆(0) to the critical temperature Tc by:

∆(0) = 1.76kbTc (2.12)

The BCS approach to the physics of superconducting systems is valid only for homo-
geneous systems. The need for describing inhomogeneous systems such as Joseph-
son junctions or superconducting vortices requires further refinement of the theoretical
treatment that will be provided in the following sections.

2.3 Superconductor - Semiconductor Heterostructures

The discovery of the Josephson effect in 1962 lead to a revolution in superconductiv-
ity, as a connection between various field of physics was made. The original picture of
Brian Josephson is to have two superconducting material (S) separated by a small insu-
lating layer (I). If the insulating layer is thin enough, Cooper pairs can tunnel through the
barrier, and transport through the insulating layer is made without developing a voltage
drop. This effect, called the Josephson effect, was discovered in many other systems very
different from the original. In its honor, when two superconductors are linked together
by another material, a Josephson junction is formed. Additionally, Josephson provided
a physical description of the junctions through two equations. The first equation states
that supercurrent Is flows through a Josephson junction according to the phase differ-
ence φ of the order parameter between the two superconductors :

Is = Ic sin(φ), (2.13)

where Ic is the critical current, the maximum amount of supercurrent that can flow
without developing a voltage drop. The second Josephson equation describes the time
evolution of the phase difference φ, when a voltage V is applied across the junction:

dφ

dt
=

2eV

ℏ
(2.14)

In this thesis, SNS Josephson junctions are discussed, in which two superconductors are
linked by a normal material with a non-tunnel type conductivity (Fig. 2.7).

The two superconducting electrodes are separated by a distance L, that defines the
normal channel length (that can differ from the true effective channel length, Leff ≥
L [28]). Introducing this length scale, Josephson junctions can be ranked in different
categories, according to a comparison made with other parameters. The categories that
will be relevant for this work are:

10



Figure 2.7: Scanning electron micrograph of an SNS Josephson junction.

• Ballistic JunctionL≪ lmfp: this transport regime happens when length of the nor-
mal material is smaller than the elastic scattering length. In the opposite situation,
the regime is called diffusive.

• Short Junction (ballistic case) L≪ ξ : the normal region is much shorter than the
coherence length, calculated for example through the BCS formula in eq. 2.11. In
the opposite situation, the "long Junction" regime is obtained.

Since SNS junctions are a type of inhomogeneous systems, BCS theory cannot be used
in their theoretical description, and a first approach can consist in using the Ginzburg-
Landau theory, which:

• Is strictly correct only for T ≃ Tc

• Does not take into account quasiparticle excitations that actively contribute to
transport properties.

A more complete treatment to the physics of these systems is provided by the Bogoliubov
de Gennes (BdG) formalism, extending the space independent BCS Hamiltonian to a
space dependent , allowing to have insights in the energy spectrum of the SNS junctions.

2.3.1 Bogoliubov - de Gennes Hamiltonian
To have a space dependent description of the superconducting coupling, the starting

point is the BCS Hamiltonian [29]:

HBCS =
∑
k,σ

ξkc
†
kσckσ −

∑
k

∆∗
kc−k↓ck↑ −

∑
k

∆kc
†
k↑c

†
−k↓ + const., (2.15)

where ξk is the energy of the electron with momentum k with respect to the Fermi level
and ∆k is the energy gap at momentum k that is needed to excite quasiparticles from
the BCS ground state (measured from the Fermi level). Introducing the Nambu spinor
base:

|Ψk⟩ =
(
c†k↑
c−k↓

)
|ΨS⟩ , (2.16)

and rewriting the BCS Hamiltonian in this base gives the BdG Hamiltonian:

HBdG(k) =

(
ξk −∆k

−∆∗
k −ξk

)
(2.17)
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The off-diagonal terms represent the superposition of electrons and holes and are key in
the description of the quasiparticle excitations of the system. The real space description
is obtained by a Fourier transform:

HBdG(r) ≡
1

N

∑
k

eik·rHBdG(k) =

(
H0(r) −∆(r)
−∆∗(r) −H0(r)

)
, (2.18)

where H0(r) is the single-electron Hamiltonian. H0(r) can be tuned to account for the
information specific to the systems under modeling. More specifically, this information
can be encoded in the potential V (r):

H0(r) = − ℏ2

2m
∇2 − µ+ V (r) (2.19)

The eigenvalue equation of the Bogoliubov - de Gennes Hamiltonian is called Bogoliubov
- de Gennes equation:

HBdG(r)Ψ(r) = E Ψ(r), (2.20)

and can be used to explicitly treat interfaces between normal and superconducting ma-
terials, providing a theoretical method to investigate the excitation spectrum of SNS
Josephson junctions.

2.3.2 (Multiple) Andreev Reflections

To understand the charge transport process in these hybrid systems, the single SN
interface has to be studied. The first treatment was done by Andreev in 1964 [30], who
discovered that when an electron (hole) coming from the N material is impinging on a
superconductor, if its energy lies in the superconducting gap where no single particle
states are available (|E| < ∆), then is reflected as a hole (electron), flipping the spin and
with opposite momentum.4 For sub-gap energies, the Andreev reflection (AR) process
transfers a charge of 2e into the superconductor, giving a mechanism of current flow
through these interfaces (Fig. 2.8). In the opposite case, when electrons carry an energy
|E| > ∆, they can directly enter the superconductor as Bogoliubov quasiparticles, with-
out undergoing AR.

Mathematically, this process is derived by looking at the solutions at energy |E| < ∆
of the BdG equations for a pair potential given by ∆(r) = ∆Θ(x). Since only one
superconductor is involved, there is no necessity in specifying the phase in the order
parameter. The Nambu spinor solution of the eigenvalue problem in the normal material,
for an impinging electron with momentum kI = (kx, ky, kz) is:

Ψ(r) =

(
eikI·r + reik̄·r

aeikH·r

)
, (2.21)

and consist in reflected electrons with amplitude r carrying the same momentum paral-
lel to the interface k̄ = (−kx, ky, kz), and in holes with kH = (khx, ky, kz).

4Possessing opposite charge and momentum, the contribution of a hole to the current is in the same
direction of the electron’s contribution, and viceversa.
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Figure 2.8: Schematic of the Andreev Reflection process: An electron (filled circle) im-
pinging from the left to the NS interface is flipped into a hole (empty circle) with opposite
spins and momentum, leading to a 2e charge transfer into the superconductor.

In the superconductor, the solutions are evanescent quasiparticle states that cannot con-
tribute to charge transport. It is found that if ∆ ≪ EF , then khx ≃ kx and since the
second component of the Nambu spinor (eq. 2.16) is given by c−k↓, it represents a hole
with opposite momentum, thus carrying negative current as do the electrons.

Figure 2.9: Reflection amplitudes in
the BTK model for two values of
the Z parameter. A: amplitude of
Andreev reflection, B: amplitude of
normal reflection. Adapted from
[31].

In reality, interfaces present defects that serve
as scattering centers for normal reflections. Even if
the interface is very clean, the discontinuity in the
Fermi velocity between the materials effectively
creates a scattering center for normal reflections.
To take into account these effects, Blonder Tin-
kham and Klapwijk (BTK) [31] considered a step
pair potential but with the addition in the single-
electron Hamiltonian of a delta barrier of height
Zℏ2k2F/m. TheZ parameter is related to the trans-
parency of the interface through:

T =
1

1 + Z2
(2.22)

The BTK model explicitly calculates the prob-
ability of different scattering processes as a
function of the Z parameter, as given in Fig.
2.9. When there is a barrier at the inter-
face, the probability of Andreev reflection (curve
A) is suppressed with respect to the proba-
bility of undergoing normal reflection (curve
B).

SNS junctions present two SN-interfaces, and
for sub-gap energies electrons and holes are al-
lowed to undergo the AR process at each interface,
providing a direct transport mechanism of Cooper
pairs between the two superconductors. If an electric field (equivalently, a voltage differ-
ence V ) is present, in traversing the channel electrons and holes are accelerated, gaining
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energy. Carriers in the channels keep undergoing AR processes until |E| > ∆, where
the probability of AR decreases (Fig. 2.9), and they can enter the superconductor as
single-particle excitations. This process, known as Multiple Andreev Reflection (MAR),
is represented in the left image of Fig. 2.10. It can be experimentally probed by looking
at the differential conductance as a function of the voltage difference of the junction.
The differential conductance presents a complex structure, with several resonant fea-
tures. When these features appear at voltages e|V | < 2∆, they are called Subharmonic
Gap Structures (SGS), and the current interpretation of Multiple Andreev Reflections
was given by BTK, with a refined model by Octavio & BTK. [32, 33] In their model, the
resonant structures appear at specific subgap voltages:

eVn =
2∆

n
, (2.23)

and follow a harmonic series. n is the number of Andreev reflection process taking place
for that resonant voltage. In the left image of Fig. 2.10, a process with n = 6 is displayed.

So far, the physics discussed regarded a step-like pair potential, in which the super-
conducting region was independent from the normal region. Due to finite de-phasing
and scattering times, when the electrons of a Cooper pair trespass the boundary between
the S and the N region, the pairing (opposite spin and momentum) is kept for some time
before randomization. At this point there are two electrons in the normal material that
are effectively paired near the boundary, inducing correlations in the normal material
and a superconducting gap ∆∗, weaker and different from the original. This is called
proximity effect5 and its effects can be seen in the subharmonic gap structures of the
differential conductance. The induced gap ∆∗, allows for new resonant scattering pro-
cesses at the interfaces between the ∆ and ∆∗ region, as depicted in the central and
right images in Fig. 2.10. [34]. How the subharmonic gap structures appear in the dif-

Figure 2.10: From the left: MAR in a SNS junction, showing n = 6 Andreev reflections
(Adapted from [35]). MAR process at (a) eVn = (∆−∆∗)/3 and (b) eVn = (∆ +∆∗)/3
, 3 is the number of Andreev reflections. Adapted from [34]

ferential conductance depends explicitly on the quality of the interface. This is relevant
because from the experimental point of view, an incorrect attribution of the subharmonic

5The opposite is also true and is called inverse-proximity, but for large superconducting banks can be
neglected.
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gap structures features to the harmonic series of MAR leads to a wrong estimation of
the induced gap. Simulations of IV curves and differential conductance as a function of
the interface transparency have been performed [36, 34] which show a transition from
peaks to dips at high interface transparencies, underlining the pivotal role of MAR spec-
troscopy in characterizing and understanding the physics in SNS Josephson junctions.

2.3.3 Andreev Bound States
If there is a voltage difference between the superconducting electrodes, carriers in

the N region can undergo up to n ≃ eVn/2∆ Andreev reflections before being injected
in the electrodes. If no voltage difference is developed between the electrodes, electrons
and holes are allowed to undergo AR indefinitely, without being injected as a single
particle excitation in the superconductor. Andreev reflections are a coherent process,
and quantum interference between the electron and hole trajectories leads to the for-
mation of discrete energy levels, in a similar way of what happens in an optical cavity.
These levels are called Andreev Bound States (ABS) and since provide a charge tranfer
mechanism when no voltage drop is developed, they are responsible for carrying the
supercurrent in SNS structures.

A toy model used to understand the formation of these discrete energy levels in
SNS junctions is to consider the pair potential in the electrodes to be given by ∆eiφL

for the left electrode and by ∆eiφR for the right electrode. For energies within the su-
perconducting gap (|E| < ∆), no single-particle states are present in the S-electrodes,
and exponentially decaying solution are formed, like in the AR process. In the normal
material, the solution to the BdG equation can be written as a superposition of counter-
propagating electron-like and hole-like states. Matching the solutions at the boundary
gives the energy spectrum [37]:

ε

|∆|
= (−1)m cos

(
L

ξBCS

ε

|∆|
+
φ

2

)
, (2.24)

where L is the effective length of the normal region, φ is the superconducting phase
difference between the two banks, and m can be 0 or 1. In reality, the spectrum of these
excitations can be much different from the solutions of eq. 2.24, and the details of the
system must be taken into account. Explicit treatment of spin-orbit coupling and mag-
netic fields in the Bogoliubov de Gennes equations has been performed, and spinful ABS
as well as Zeeman-splitted ABS have been reported [38, 39].

For an SNS short junction (L ≪ ξ) having N modes with transmission τi and con-
ductance G = 2e2/h

∑
i τi, by using the BdG formalism it can be shown that the energy

of the ABS is given by [40]:

Ej(φ) = ±∆

√
1− τj sin (φ/2)

2, (2.25)

where the ± symmetry follows from the particle-hole symmetry underlying the theory,
and each mode contributes to the formation of a pair of ABS. This simple model high-
lights how the energy of the ABS depends on the phase difference of the superconducting
banks, a property that is key in understanding how they contribute to the current flow,
by transferring Cooper pairs between the superconductors.
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2.3.4 Current Phase Relationship in SNS weak links

The current phase relationship (CPR) in a Josephson junction connects the super-
current flowing through the junction to the phase difference φ of the superconducting
leads. It follows directly from the free energy:

I =
2e

ℏ
dF

dφ
(2.26)

and from its expression in terms of the excitation spectrum it is possible to write gen-
eral relations between the current and the phase [41]. Since Andreev Bound States are
responsible for carrying the supercurrent in SNS Josephson junctions, their energy dis-
persion (the excitation spectrum) contains all details required to calculate the CPR, and
experimentally it has been demonstrated to be a viable strategy to obtain that informa-
tion [14].

If the excitation spectrum is known, the supercurrent I (φ) is the sum of three com-
ponents:

I1 = −2e

ℏ
∑
p

tanh

(
εp

2kbT

)
dεp
dφ

(2.27)

I2 = −2e

ℏ
2kbT

∫ ∞

∆

dε ln [2 cosh ε/(2kbT )]
dρ

dφ
(2.28)

I3 =
2e

ℏ
d

dφ

∫
dr|∆|2/|g| (2.29)

The I1 term follows from the discrete (ABS) spectrum, with sub-gap energies εp ∈ (0,∆).
The second contribution, I2, is given by the continuum quasiparticle spectrum, which
has a density of states ρ. The third contribution, present only for a phase dependent am-
plitude of the energy gap∆, is usually neglected in the short junction limit. This theoret-
ical method of calculating the CPR, not strictly related to SNS Josephson junctions, has
demonstrated to be useful in studying the nontrivial physics of these superconducting-
semiconducting hybrids, from spontaneous supercurrents to superconducting diode ef-
fects, and also to propose new devices. [42, 43, 44]. By making several assumptions on
the transport properties of the device under study, several different types of CPR are
obtained [45]. Each ABS carries a current:

I(φ) = 2ef0 [E(φ)]
d

dφ
E(φ), (2.30)

proportional to the derivative of its energy dispersion and to its occupation, described by
a Fermi-Dirac distribution. The most important property follows directly: since a pair of
bound states at fixed phase have opposite energy (due to electron-hole symmetry) then
each of those carries supercurrent in the opposite direction.6 Net supercurrent transport
across the SNS junction happens only if there is an unbalance in the occupation of the

6Each ABS of the pair can carry supercurrent in both directions. At a fixed phase difference φ they
carry opposite current.
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two states.

At zero-temperature, where the occupation is simply a step function, by summing
over each ABS the following CPR is obtained:

I (φ) =
∑
j

(
τje∆

h

)
sinφ√

1− τj sin (φ/2)
2
, (2.31)

where it is highlighted that all ABS at negative energy are occupied while the positive
energy ABS are unoccoupied, giving net supercurrent transport. At finite temperature,
the CPR decays due to thermal occupation of the higher energy ABS. Explicit calculation
with the derivative of the Fermi-Dirac distributions (eq. 2.30) gives the following, general
case, CPR:

I (φ) =
e∆2

2ℏ
∑
j

τj sinφ

Ej

tanh
Ej

2kbT
(2.32)

From this expression, several limits (diffusive, ballistic, ..) can be considered to derive
specific-case relations.

2.3.5 Dynamics of the single Josephson junction: RCSJ model
Microscopic models, even if they provide an accurate picture of the devices, are cum-

bersome to use and provide only an equilibrium description of the properties of the
system. Circuit effective models come to help in giving a first understanding of the dy-
namics of current flow through Josephson junctions.

To this end, the Resistively and Capacitively Shunted Junction (RCSJ) model is widely
used to model the dynamics of a Josephson junction [46]. In this model, the physical
Josephson junction is represented by the electrical parallel connection of three elements:
a resistor (R), a capacitor (C), and a Josephson element with CPR I (φ). In the common
version, the ideal Josephson element with a sinusoidal CPR is used. The resistor accounts
for the normal-state resistance and for quasiparticle current, the capacitor represents the
junction’s capacitance and displacement current, and the CPR describes the supercurrent
flow. In addition to that, a thermal current noise component can be included in the model
to take into account the finite temperature:

I = I(φ) +
V

R
+ C

dV

dt
+ δIth (2.33)

To keep the formalism simple at an analytical level, a sinusoidal CPR I(φ) = I0 sinφ
is used, while for the more general case a numerical approach is needed. Neglecting
thermal noise and using the Josephson equation, repeated here for convenience:

∂φ

∂t
=

2e

ℏ
V, (2.34)

it is possible to obtain:
I

I0
= sinφ+

dφ

dτ
+ βC

d2φ

dτ 2
, (2.35)
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Figure 2.11: The motion of a particle in a tilted washboard potential. The change of
phase difference across a Josephson junction shows an analogous behavior. Taken from
[46].

where the reduced time τ = [h/(2eI0R)]t, and the hysteresis parameter βC = 2πI0CR
2

have been introduced. The equation written above is formally equivalent to the motion
of a "phase" particle in a tilted washboard potential U(φ) ∝ (1− cosφ+ (I/I0)φ). The
position of the particle corresponds to the phase, and the tilt of the washboard is pro-
portional to the applied current, as displayed in Fig. 2.11.

When the current is below a critical value, the phase particle is trapped in one of the
potential wells. In this case φ̇ = 0, and by 2.34, corresponds to V = 0 for I ̸= 0: the
superconducting state. When I > I0, the tilt is such that φ̇ is always nonzero, giving a
voltage difference across the junction: the dissipative state. When thermal fluctuations
are taken into account [47], even if I < I0 , the phase particle can gain enough energy
to escape from the well and being trapped in another, leading to a premature switching
event. The premature switching is understood by using eq. 2.34: if φ̇ ̸= 0 ⇒ V ̸= 0. The
rate of thermal excitations increases with temperature, as higher temperatures provide
more thermal energy to the phase particle, up to a point at which even for I < I0, there
is always a finite voltage difference, since ⟨φ̇⟩ ≠ 0 ⇒ ⟨V ⟩ ≠ 0.

The RCSJ phenomenological model does not take into account phenomena like the
quantum tunneling of the phase particle or Multiple Andreev Reflections in the resistive
state, but even if with some limitations, it still represents a very useful instrument in
having a clear picture of physics of the junction.

2.3.6 Single junction interference

The order parameter in a superconductor is characterized by an amplitude and a
phase ∆(r) = ∆(r)eiφ(r) which both are in free to vary in space. In the Josephson junc-
tion treatment given so far, the SNS junction was modeled as one-dimensional, neglect-
ing the finite area of the weak link. When a magnetic field is applied perpendicularly to
a Josephson junction, and if the supercurrent distribution in the channel is uniform, then
the critical current presents an interference pattern, resembling that found in single-slit
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Figure 2.12: Theoretical magnetic field dependence of the maximum supercurrent for a
rectangular junction with uniform supercurrent density. Adapted from [47].

optical experiments, and called Fraunhofer pattern,7 described by:

I(ΦJJ) = Ic sin

(
π
ΦJJ

Φ0

)
1

πΦJJ

Φ0

, (2.36)

where ΦJJ is the magnetic flux enclosed by the junction. The theoretical Fraunhofer in-
terference pattern is displayed in Fig. 2.12. From an experimental point of view, the
shape of the interference pattern can be used to deduce the supercurrent spatial distri-
bution in the junction [48]. It can be in fact shown that the supercurrent density spatial
distribution is the Fourier transform of the interference pattern. By employing the in-
verse Fourier transform, it is possible to retrieve the supercurrent density distribution
from the measured critical current modulation. However, the shape of the interference
pattern does not always resemble what shown in Fig. 2.12 [49, 50]. In both ballistic and
diffusive junctions, the period of the critical current interference pattern changes con-
tinuously as the length-to-width ratio of the junction increases or as the temperature
decreases [51] and deviations from the expected Fraunhofer pattern are often reported.

2.4 Superconducting Quantum Interference Devices

Superconducting QUantum Interference Devices (SQUIDs) are a class of supercon-
ducting devices that combine the physics of two phenomena: the Josephson effect and
flux quantization. Over the years, many kinds of SQUIDs were realized and proposed
[52, 53], with different superconductors, weak links, and principles of working. In this
thesis I discuss dc-SQUIDs, the variant in which two Josephson junctions are connected
in a superconducting loop and operated by sending a constant current (current biasing)
while measuring the voltage drop across the device.

2.4.1 Flux Quantization

Flux quantization in superconductors is a fundamental phenomenon arising from
the quantum nature of the superconducting order parameter. There are different ways

7also called Fraunhofer "diffraction" pattern.
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in which flux quantization can be derived, and one of the simplest is to use the Ginzburg-
Landau formalism.

Consider a superconductor with a hole. The hole can be physical, e.g., in a ring
geometry, or can be a part of the material that is not in the superconducting phase. Flux
quantization states that the magnetic flux in the ring must be an integer multiple of a
fundamental constant:

Φ = n
h

2e
(2.37)

The fundamental constant, Φ0 = h
2e

, is called superconducting flux quantum: Φ0 ≃
2.069 µm2 mT. The quantization occurs because the macroscopic wave function, being
associated with an observable, must be single-valued and continuous. More specifically,
by integrating the supercurrent given by eq. 2.9 on a closed loop, the following relation
is obtained: ∮

C

(ΛJs) · dl+
∫
S

B · ds = nΦ0 (2.38)

called fluxoid quantization condition. Since supercurrents flow on the surface, if the path
is taken deep in the bulk, a strict quantization of the magnetic flux is obtained. In the
following, this assumption will be assumed to always hold, i.e., all superconductors are
thick enough to neglect the first term in eq. 2.38.

2.4.2 Supercurrent Interference

The dc-SQUID (for the rest of the thesis, SQUID), shown in Fig. 2.13 (a), consist in
connecting in parallel two Josephson junctions in a loop. Each junction is characterized
by the superconducting phase difference of the order parameter φ1, φ2. The loop, with
inductance L, encloses a magnetic flux Φ. The fluxoid quantization condition of eq. 2.38,
when applied to the superconducting loop , allows to related the phase difference φ1 and
φ2 according to how much flux is penetrating the loop Φ.

Figure 2.13: (a), sketch of a SQUID in which a current bias of I is performed. The two
phase drops δ1 and δ2 are connected by the flux quantization condition. Unbalance in
the supercurrents between the two arms result in a screening current J. (b) The minima
in the interference pattern are lifted to a finite current value in case of non-negligible
inductance. (c) Effect of βL on the inteference pattern modulation normalized by the
critical current of a symmetric SQUID.
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φ1 − φ2 = 2π
Φ

Φ0

(2.39)

A current J circulating in the loop, due to the inductance L, generates an additional
contribution to the flux :

Φ = Φext + LJ (2.40)

The current J is called the screening current and can be related to the current flowing in
each arm by J = I1− I2. The physical interpretation of the screening current is that the
current flow in the loop can be seen as two arms carrying an equal amount of current
(I1 + I2)/2 with a superimposed circulating (screening) current, that gives a positive
contribution in one arm and negative in the other.

When applying a transverse magnetic field such that Φ ̸= 0 in the loop, the phase
drops across the junctions are not independent. If a sinusoidal CPR is assuemd, the
current through the loop can be written as:

I (φ1, φ2) = Ic1 sinφ1 + Ic2 sinφ2,

then, by using eq. 2.39 and maximizing on φ1, the critical current of the SQUID is mod-
ulated in a periodic pattern :

Ic (Φ) =

√
(Ic1 − Ic2)

2 + 4Ic1Ic2 cos

(
π
Φ

Φ0

)2

(2.41)

This effect, called superconducting quantum interference, leads to total suppression of
the superconducting behavior (V = 0 for I ̸= 0) when the two arms have equal critical
current Ic. For simplicity, suppose that the loop inductance is negligible: when half flux
quantum is applied, such that the two phase drops are shifted by π (eq. 2.39), then for
every value of the phase no net supercurrent flows through the device:

I (φ1, φ1 − π) = Ic sin (φ1) + Ic sin (φ1 − π) = Ic sin (φ1)− Ic sin (φ1) = 0,

causing total destructive interference. When the two junctions possess different critical
currents, the amplitude of the smaller one cannot cancel the other, leading to a minimum
supercurrent of |Ic1− Ic2|. A similar effect is provided by finite inductance, as displayed
in Fig. 2.13 (b). In this case, to understand how much the two phases are related by the
flux quantization condition, the screening parameter is introduced:

βL =
2LIc
Φ0

(2.42)

For large screening parameters, the critical current vs flux curve (interference pattern)
show little modulations, estimated at first order by ∆Ic/Ic = 1/(1 + βL). Furthermore,
the relation between the applied and effective flux in the loop is solution to the nonlinear
equation (written for the case Ic1 = Ic2):

Φ

Φ0

=
Φext

Φ0

+ βL cos

(
1

2
(φ1 + φ2)

)
sin

(
Φ

Φ0

)
(2.43)
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that can be derived by imposing the flux quantization condition on the Φ vs. Φext re-
lation. Even for a symmetric SQUID with Ic1 = Ic2, for βL = 1 the critical current
modulates at maximum by 50%.

To estimate to which extent this effect is important, a calculation of the total induc-
tance of the loop is needed. This typically contains two contributions: one geometrical
and one "kinetic". The kinetic inductance is a contribution to the inductance caused by
the inertia of Cooper pairs.8 Cooper pairs have finite mass and thus exhibit inertia when
they accelerate. This inertia creates an additional inductive effect, which is particularly
significant at high frequencies or in thin superconducting films. The kinetic inductance
can be understood as the energy stored in the motion of the charge carriers, analogous
to the energy stored in the magnetic field of a conventional inductance. This effect is
crucial in the design of superconducting devices, not only SQUIDs but also resonators
and detectors, where it can influence the device’s performance and frequency response.
For a superconducting wire of length l, width W , and thickness t, it can be estimated by
the following formula [54]:

LK =
µ0λ

2
Ll

Wt
(2.44)

As a rule of thumb, it is relevant only when the thickness of the superconducting strips
are comparable to or smaller than the London penetration depth λL.

2.4.3 Normal State Conductance of a SQUID based on SNS junctions

If a SQUID is realized from SNS Josephson junctions with a 2D-semiconducting nor-
mal material, then the normal resistance can be modeled by using eq. 2.6, which also
includes the interface between the superconducting metal and the semiconductor. In
this case, the model for the semiconducting channel can be used, which is reported here
for convenience:

1

GJJ
=

(
cox

W

L
µ (Vbg − Vth)

)−1

+ 2Rc (2.45)

For two Josephson junctions in parallel, i.e., the case of dc-SQUIDs, the total conduc-
tance is the sum of eq. 2.45 for the two junctions, which is plotted in Fig. 2.14:

GSQUID = GJJ,1(Vth,1, µ1, Rc) +GJJ,2(Vth,2, µ2, Rc) (2.46)

2.4.4 SQUID interference at high magnetic fields

The single junction Fraunhofer pattern was briefly introduced in Sec. 2.3.6. When
two junctions are connected in parallel and when the magnetic field applied is such that
ΦJ1/Φ0, ΦJ2/Φ0 , and Φloop/Φ0 are non negligible, the interference effect of the SQUID
superimpose with the one of the Fraunhofer giving a non trivial shape of the interfer-
ence pattern [55, 56, 57].

8This contribution to the inductance is not restricted to superconducting strips, but it is usually ne-
glected in metal wires at low frequency.
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Figure 2.14: Left: Model of the conductance of a SQUID. The parameters used are Vth,1 =
0V, Vth,2 = 8V; µ1, µ2 = 4000, 10 000 cm2V−1s−1; Rc1 = Rc2 = 200Ω. For little
difference in the voltage thresholds, the conductance at the upper threshold has a slope
which is proportional to the sum of the effective mobilities. Right: The parameters used
are Vth,1 = 3V, Vth,2 = 20V; µ1, µ2 = 5000, 2000 cm2V−1s−1; Rc1 = 1000Ω, Rc2 =
200Ω. For very different voltage thresholds, the slope of the conductance at the upper
threshold is proportional only to the effective mobilities of one junction.

To calculate the interference patterns of a SQUID where also the flux over each junc-
tion has a contribution, I use the Ginzburg-Landau formalism. In the case of a sinusoidal
CPRs, following the derivation of the Fraunhofer formula [47] and applying the fluxoid
quantization condition (eq. 2.38), it is possible to plot the critical currents of SQUID in
four cases. The pedagogical derivation is out of the scope of this work, and I limit myself
in reporting the result of the calculation:

J1 = Jc1 sin

(
∆φ11 + π

ΦJ1

Φ0

)
1

πΦJ1

Φ0

sin

(
π
ΦJ1

Φ0

)
(2.47)

J2 = Jc2 sin

(
∆φ11 + π

ΦJ2

Φ0

+ 2π
Φloop

Φ0

)
1

πΦJ2

Φ0

sin

(
π
ΦJ2

Φ0

)
(2.48)

Jc = max
∆φ11

(J1 + J2) (2.49)

J1 and J2 are the current density flowing through the two SQUID arms. The phase ∆φ11

is a reference phase.9 The results are displayed in Fig. 2.15, for four limiting cases, as
listed below:

The four cases are the following:

• Panel (a): Two Josephson junctions with equal critical current density (in arbitrary
units) and equal area: Jc1 = Jc2 = 1, A1 = A2 = 0.1 µm2. The loop area is
10 times larger than the area of the junctions: Aloop = 1 µm2. In this case the
SQUID ("rapid") oscillations are visible with the envelope being modulated by the
Fraunhofer pattern.

9Similarly to the SQUID, it is irrelevant where the reference phase is taken. For the SQUID, it is possible
to obtain the critical current by maximizing the supercurrent with respect to the phase on a junction of
choice. In this case, other than specifying a junction of choice, I have specified a position on the junction.
To the calculation of the critical current, in the Ginzburg Landau formalism, it is irrelevant where is taken.
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Figure 2.15: (a)-(d) Calculated interference patterns at high magnetic fields for SQUID
with sinusoidal CPRs for different ratios of critical current densities and areas. The crit-
ical current densities are in arbitrary units.

• Panel (b): Two Josephson junctions with equal critical current density but different
area: Jc1 = Jc2 = 1, A1 = 0.1 µm2, A2 = 0.5 µm2. The loop area is much larger
than the area of the junctions: Aloop = 10 µm2. The SQUID oscillations are very
dense with respect to the modulations due to both the Fraunhofer patterns. Even
if the SQUID is made with two junctions with the same critical current density,
the different areas are such that the interference pattern modulates completely to
zero only if ΦJ1/Φ0, ΦJ2/Φ0 , and Φloop/Φ0 are integer numbers at the same time.

• Panel (c): Two Josephson junctions with equal area but different critical current
density A1 = A2 = 0.1 µm2, Jc1 = 1, Jc2 = 5. In this case the interference pattern
modulates to zero only if ΦJ1/Φ0 (that is equivalent to ΦJ2/Φ0) is an integer.

• Panel (d): Two Josephson junctions with different area and different critical current
density. Jc1 = 1, Jc2 = 3, A1 = 0.14 µm2, A2 = 0.44 µm2. The area of the loop
three orders of magnitude larger than the area of the junctions Aloop = 150 µm2.
In this case the interference pattern modulates to zero only if ΦJ1/Φ0, ΦJ2/Φ0 are
integer numbers at the same time. This does not happen ifA1/A2 is not an integer.
When one of ΦJ1/Φ0 or ΦJ2/Φ0 is an integer, the SQUID modulation goes to zero,
as the supercurrent in one arm of the SQUID interferometer has been suppressed
by the single junction interference.

From this model it is possible to conclude that inspecting the single junction inter-
ference regime of the SQUID interference pattern is useful to extract information on
the single junctions parameters, like the effective area. This can be done even in ex-
treme limiting situations where the SQUID interference pattern is very dense, providing
valuable insights into the single junction physics of a SQUID.
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2.4.5 SQUIDs in magnetometry

Since the discovery and demonstration of SQUID-type interference, the interest in
SQUIDs has rapidly expanded into several fundamental research areas of quantum me-
chanics and condensed matter physics. Josephson junctions, per se, offer a vast play-
ground for inventing new devices across various fields. Introducing a new tuning param-
eter to a Josephson junction opens up numerous combinations, expanding the range of
possibilities. For example, SQUIDs acting as memories were proposed [58], arrays of dc-
SQUIDs have been utilized to develop low-noise current sensors [59], and a differential
amplifier based on a SQUID was proposed very recently [60]. SQUIDs currently provide
invaluable contributions to the study of the Josephson effect, with novel measurement
methods. The high sensitivity and precision of SQUIDs allow for the investigation of the
interplay between superconductivity and magnetism, also making accessible the physics
of magnetic moments and spins accessible to new levels.

Figure 2.16: (a) Current–voltage characteristics computed for Φext = 0 and Φext = Φ0/2.
(b) Voltage–magnetic flux characteristics computed for i = 1.5, 2.0, 2.5 and 3.0.

Starting from the basics, the most important application of SQUIDs consist in the
measurement of small magnetic fields. In Fig.2.16, the IV characteristic of a SQUID with
nonzero βL are shown. By providing a constant current bias, a non-hysteretic (βC = 0)
SQUID works as a magnetic flux to voltage transducer and can be used as a magnetic
flux detector.10

To explain the principle of working, suppose that a very small field is applied to
the SQUID, such that Φext ≪ Φ0, and the field is allowed to change in time. In this
scenario, a current bias is applied to the SQUID in such a way that V ̸= 0. When the
magnetic field changes in time by a certain amount ∆B, the voltage drop across the
SQUID changes by a small amount ∆V . The flux variation ∆Φ can be linked to the
variation in the SQUID voltage by a characteristic quantity of the SQUID, the voltage
responsivity VΦ = ∂V/∂Φext:

∆Φ =
∆V

VΦ
(2.50)

10Hysteretic SQUIDs can be used to measure magnetic fields, but in that case they are employed as
critical current to flux transducers, as the well-define quantity is not the voltage, but the switching current.
[61]
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Figure 2.17: Scanning SQUID microscopy image of vortices in a 200 nm thick YBCO film
taken at 6.93 µT and 4 K. Adapted from [63].

The voltage responsivity is the slope of the V–Φ curve at the magnetic bias point and rep-
resent how much the SQUID is sensitive to changes in the magnetic field. The magnetic
field is obtained with the ratio of the measured magnetic flux to the SQUID effective
area. Since the applied external flux to the SQUID is Φext ≪ Φ0, to maximize the re-
sponsivity and enhance the signal-to-noise ratio an additional external magnetic flux is
applied Φext,add = Φ0/4 [62]. The constant current bias, close to the critical current to
have V ̸= 0, is chosen to maximize the responsivity at the magnetic bias point.

The sensitivity reached by SQUIDs is extraordinary, and recently allowed by scan-
ning SQUID microscopy (SSM) to image superconducting vortices in thin films of YBCO
[63] shown in Fig. 2.17.

When the signals to be detected exceed the flux quantum, the SQUID response needs
to be linearized. To achieve this, a Flux-Locked-Loop (FLL) configuration is commonly
employed [64] with a scheme displayed in Fig. 2.18. The name originates from the fact
that the effective flux needs to be less than one flux quantum: in this setup, the output
voltage is transformed into a current using a resistor (RF in figure) and fed back into
the SQUID as a magnetic flux through an inductively coupled coil LF , ensuring that the
total magnetic flux is zero.

Figure 2.18: Flux locked loop circuit employed to increase the linear dynamic range of a
dc SQUID. Adapted from [46].

In this discussions, the role of noise has not been considered. While it goes far be-
yond the scope of the thesis to give a full treatment of noise in SQUIDs, for the typical
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application the following conditions are required:

• in the operating regime of the device the Josephson energy associated with the
supercurrent flow must be much larger than the effect of temperature kbT :

EJ(T ) = Φ0I0(T )/2π ≫ kbT (2.51)

This is equivalent in saying that, in the RCSJ picture, the critical current of the
device I0 must be much greater than the current thermal noise. At T = 0.4K, the
current thermal noise is δIth ≃ 18 nA.

• The magnetic energy associated with the inductance must be also much greater
than the thermal energy: Φ2

0/4πL≫ kbT , which is equivalent to the condition:

L≪ LF = Φ2
0/(4π

2kbT ) (2.52)

LF , the fluctuation threshold inductance, at 4K takes the value of ≃ 2 nH [65]

The origin of noise in quantum devices is known to depend on the transport regime.
Shot noise is dominant when transport is limited by charge quantization while Johnson-
Nyquist noise is given by the random thermal motion of carriers, plus many others.

In dc-SQUIDs, typically the noise is Johnson-Nyquist noise arising from finite tem-
perature and by the resistive probe used to measure the voltage (that in Fig. 2.18 cor-
responds to the shunt resistors R). The effect of noise, anticipated in the RCSJ model,
consist in a rounding of the IV curve below the critical current of the Josephson junc-
tions. This rounding affects also the voltage responsivity VΦ of the devices, degrading it.
This directly affect the power spectral density (PSD) of the observable of the SQUID, the
flux noise SΦ = SV /V

2
Φ . Using numerical simulations, assuming an average zero current

thermal noise with a Gaussian spectra, allows to simulate both the voltage responsivity
as a function of the current bias and the PSD of the voltage noise, as displayed in Fig.
2.19.

Figure 2.19: (a) Voltage responsivity as a function of the bias current. (b) Power spectral
density value in the white region of the voltage noise as a function of the bias current.
For bias current much greater than the SQUID critical current, the voltage noise tends to
the Nyquist noise of the normal resistance (Rs/2). (c) Spectral density of the magnetic
flux noise as a function of the bias current, the arrow indicates the minimum in SΦ,
obtained by taking the root square of the ratio SV /V

2
Φ . Adapted from [46].
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As shown in Fig. 2.19, there is a minima in the flux noise PSD SΦ for a bias current
of the SQUID of ≃ 1.6Ic, as indicated by the arrow. Further numerical simulations
allows to determine that the best condition for the SQUID operation as a magnetometer
is obtained for βL = 1 and for Φ = 0.25Φ0. Specifically, to compare the performances
of SQUID, another parameter is used, the noise energy per unit bandwidth:

ϵ =
SΦ

2L
(2.53)

and expressed in units of ℏ. The best SQUIDs reach ϵ of few ℏ, limited only by the
uncertainty principle, and thus operate in the quantum limit [66, 67].

2.4.6 SQUIDs in Current Phase Relationship Measurements

SQUIDs are renowned not only for their exceptional sensitivity as magnetic field de-
tectors but also for their pivotal role in probing the CPR of weak links. The fundamental
principle underlying this type of measurements using the SQUID geometry is the strong
asymmetry between the critical currents of the two arms [68, 69, 70, 71, 12].

There are different levels of analysis that can be pursued, one more refined than the
other. I will begin with the most basic level, which, while ignoring some complexities,
provides a solid foundation to build upon.

Strong asymmetry in the critical currents As mentioned, the CPR measurement
relies on the fact that one arm of the SQUID presents a much higher critical current than
the other arm, i.e.:

max
φ

I1 (φ) ≫ max
φ

I2 (φ)

The idea is that the critical current of one junction is so large with respect to the other,
that the critical current of the whole SQUID is maximized only if the current through
the high-Ic junction is maximized.

In this way, when measuring the critical current of the SQUID while changing the
flux density, the phase on the high-Ic junction is "locked" on value that maximizes the
supercurrent and the modulation are entirely due to the CPR of the small-Ic junction:
Thus, subtracting the dc-component from the measured pattern, the CPR of the small-Ic
junction can be reconstructed.

Ic (Φ) = I1 (φ = φmax) + I2

(
φmax + 2π

Φ

Φ0

)
(2.54)

Strong asymmetry in the critical currents& strong asymmetry in the derivatives

The requirement of large asymmetry alone is not sufficient, and the precise shape of both
the CPR must be taken into account [13]. Suppose that two junctions with CPR I1(φ1)
and I2(φ2) are connected in a superconducting loop to form a SQUID. To find the critical
current of the SQUID, the sum of I1 and I2 must be maximized taking into account the
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flux quantization condition, eq. 2.39:

Ic (Φ) = max
φ

[
I1 (φ) + I2

(
φ+ 2π

Φ

Φ0

)]
,

which leads to requiring that φ is a stationary point:

∂I1(φ)

∂φ
+
∂I2(φ+ 2πΦ/Φ0)

∂φ
= 0 (2.55)

It is possible to explicitly factor out the critical currents from the CPR, by writing the
CPR as:

Ii(φ) = Icifi(φ) (2.56)

To take into account the asymmetry in critical currents, the stationary condition, eq.
2.55, is rewritten in the following way:

Ic1
Ic2

∂f1(φ)

∂φ
= −∂f2(φ+ 2πΦ/Φ0)

∂φ
(2.57)

When the solution of this equation, φ∗, matches the "critical phase" φc for every value
of the flux enclosed in the loop, such that I1(φc) = maxφ I1(φ), then the interference
pattern (minus I1(φc)) is the CPR of the small-Ic junction:

Ic (Φ) = I1 (φ = φc) + I2

(
φc + 2π

Φ

Φ0

)
(2.58)

Alternatively, it is desirable for the function φ∗(Φ) to be well localized near φc. In such
cases, the scenario depicted in eq. 2.58 will hold, and the CPR can be accurately recon-
structed from the SQUID interference pattern.

From the condition of eq. 2.57, it is evident that to accurately describe the CPR, where
every point of the I2(φ) relation is sampled, the following conditions on the derivatives
must be satisfied:

Ic1
Ic2

max

(
∂f1
∂φ

)
> −max

(
∂f2
∂φ

)
Ic1
Ic2

min

(
∂f1
∂φ

)
< −min

(
∂f2
∂φ

)
If there is a point in the I2(φ) relation with a derivative that is too high, then no

solution to eq. 2.57 exists, and that point cannot be accessed from the interference data
of the SQUID.

Increasing the asymmetry ratio, which multiplies the derivative on the left side of
eq. 2.57, expands the range of derivatives of the small-Ic junction that can be explored.
At the same time, if the derivative of the high-Ic junction near φc is too small, then the
function φ∗(Φ) is no longer well localized near φc, because in general eq. 2.57 will have
a solution at a phase different than φc. A good example is the case of a sinusoidal CPR
for I1(φ), where the derivative at the maximum of the CPR is zero.
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The optimal scenario arises when the CPR of the high-Ic junction exhibits a high
derivative near the maxima φc. This condition allows for minimal phase adjustments,
thereby satisfying eq. 2.57. In this case, Josephson junctions exhibiting linear CPRs
with a sawtooth-like shape are the most suitable candidates for serving as the high-Ic
junction in a SQUID. This configuration facilitates the measurement of CPRs of various
weak links, including those with moderate to high derivatives.

Further complications Some example of Josephson junctions exhibiting linear CPRs
with a sawtooth-like shape are superconducting nanobridges. These are nanometers-
sized constriction in a superconducting material (e.g. Niobium, Aluminum) that often
can contribute with a non negligible kinetic inductance. In general, whenever the induc-
tance has a sizable effect, the Φext vs. Φ relation must be calculated taking into account
these contributions. In the literature analytical approaches are described only in the case
one junction has a known sinusoidal CPR [72], and in general a numerical methods must
be used.

An additional problem that can occur is that the extracted CPR contains a low fre-
quency Fraunhofer modulation. To avoid distortions in the CPR due to this effect, the
low frequency contribution can be numerically filtered from the CPR in the Fourier 1/Φ
space, providing a more accurate results whenever the ratio Aloop/AJJ is not much larger
than 1.

2.4.7 SQUIDs as superconducting diodes

The superconducting diode effect is a recently predicted [73] and observed [74] phe-
nomenon in which by breaking inversion and time-reversal symmetry , the critical cur-
rent for positive and negative current bias is different:

|Ic+| ≠ |Ic−| (2.59)

In this way there is a range of current bias values in which in one direction the super-
conductor is dissipative, and in the other superconducting. The discovery of this effect
opens new possibilities for innovative applications in superconducting circuits, quan-
tum computing, and other advanced technologies since a fundamental component of
electronics, the analog of the pn-junction, is now available in a superconducting ver-
sion. One of the possible physical origins in a homogeneous superconductor consist
in breaking inversion and time-reversal symmetry applying a magnetic field while ex-
ploiting the magneto-chiral anisotropy, a property for which the electrical conductivity
(resistance) differs depending on the direction of the applied magnetic field, resulting in
non-reciprocal electrical properties according to the magneto-chirality coefficient γ:

R = R0(1 + γ(B× z) · I) (2.60)

HereR0 is the resistance in case of zero flux density B, z is the direction where inversion
symmetry is broken and I is the electrical current. If a nonzero flux density arises in a
plane perpendicular to the z direction, the resistance is different according to the sign
of I, and when combined with superconductivity, this allows to obtain |Ic+| ̸= |Ic−|.
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The field of non-reciprocal transport in superconductors is active and very recent field
of research, and there are several ways to obtain the superconducting diode effect. Vor-
tices in superconductors, screening currents or self-field effects could be key and give a
consistent contribution in the observation of this phenomena [75, 76, 77, 78, 79].

When the superconducting diode effect is combined with induced superconductivity
in Josephson junctions, to emphasize the role of the Josephson effect, it is called Joseph-
son Diode Effect. The first observation was performed in an array of Al-InAs quan-
tum well-Al Josephson junctions [80]. The authors demonstrated that combination of
magneto-chiral anisotropy, arising from the strong Rashba spin-orbit interaction along
the perpendicular direction, and an asymmetric CPR are sufficient conditions for the de-
vice to show Josephson Diode Effect. Their findings are represented in Fig. 2.20, where
by applying a magnetic field in-plane with the junction they were able to demonstrate a
µA difference in the critical currents along the two opposite directions of transport. In
recent works, the difference was reported both between the switching and the retrapping
currents [81]. Moreover, one key property of the diode effect in proximized structures is
the ability to be gate-tunable, which is used as argument in motivating that the Rashba
SOI is key in visualizing this effect [82]. In the platform used in this thesis, the InSb
nanoflag, Josephson Diode Effect was recently demonstrated by Turini et al. [11]. They
found that for small magnetic fields, the supercurrent asymmetry |Ic+| − |Ic−| increases
linearly with the external field, saturating when the Zeeman energy becomes relevant.
The diode effect was observed at T = 30mK and was found to be strongly suppressed
by temperature, disappearing at T = 200mK.

Figure 2.20: Difference between |Ic+| and |Ic−| as a function of the in-plane field By for
an array of ballistic InAs quantum well Josephson junctions at a temperature of 100mK.
Adapted from [80].

Paradoxically, that SQUIDs could demonstrate diode effect, it has been known for
some time [83, 84] and formerly referred to as voltage rectification. However, after the
Josephson diode effect demonstrations in Josephson junctions, the interest in the diode
effect in asymmetric SQUIDs has been revived [85, 86]. The difference with respect to
Josephson junctions is that in SQUIDs the effect can be demonstrated on smaller mag-
netic field scales, and also without invoking the physics of Rashba spin-orbit interaction,
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Figure 2.21: Top Positive branch Ic+ (red) and reversed negative branch −Ic− (blue) of a
SQUID interference pattern. One junction has a sinusoidal CPR, while the other possess
a sizable second harmonic content (10%). Bottom: rectification coefficient, calculated
with eq. 2.61.

or more exotic phenomena. Both the time reversal simmetry and the spatial inversion
symmetry are broken simply by requiring the flux quantization condition to hold and
that one junction possess higher harmonics in the CPR. To show the simplicity with
which the diode effect arises in SQUIDs, consider a SQUID made with two junctions:

I1(φ1) = 10 sin (φ1) + sin (2φ1)

I2(φ2) = sin (φ2)

The calculated SQUID interference pattern is displayed in Fig. 2.21. In the top image,
the positive critical current branch Ic+ does not align with −Ic−, resulting in a periodic
Josephson diode effect. The corresponding rectification η, defined below, is shown in
the bottom panel:

η =
|Ic+| − |Ic−|
|Ic+|+ |Ic−|

(2.61)

The rectification is periodic with the interference pattern and shows the possibility to
reverse the polarity of the diode by tuning the magnetic field. The rectification proper-
ties are enhanced as both the asymmetry and the higher harmonic content are increased.
Experimental demonstrations of this effect were performed in SQUIDs formed by topo-
logical JJ with a 4π-periodic current-phase relationship and a topologically trivial JJ,
in which by tuning properties of the trivial SQUID arm could lead to diode polarity
switching [87]. Other investigations probed SQUIDs based on edge states transport in
topological insulators and reporting efficiency as high as 73% [88]. However, being a
really recent topic, not many experimental investigations have been carried out, which
are indeed needed to optimize the conditions that enhance the JDE, including the effects
of different materials and geometric configurations.
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3

Experimental Details

3.1 InSb nanoflags

The III-V compound Indium Antimonide (InSb) is an interesting material, possessing
large spin-orbit coupling, large Landé g-factor, and low effective mass, making it partic-
ularly important in spintronics and opto-electronics . In addition to that, it is a leading
candidate for the implementation of topological qubits based on Majorana Fermions.
The availability of this material, however, is not abundant. Due to an important lattice
mismatch with other common semiconductor substrates, the Molecular Beam Epitaxy
growth of InSb (in the form of quantum wells) has demonstrated to be a challenging
task, as carefully designed buffer systems needs to be grown to overcome the lattice-
mismatch, that with commons substrates, like GaAs, reaches even 14.6% [89, 90, 91].
To mitigate this problem, the growth of free-standing nanostructures was developed.
Relaxing the strain caused by the lattice mismatch, the free-standing growth allows the
development of large two-dimensional crystals.

One example of these nanostructures is provided by the InSb nanoflags, displayed in
Fig. 3.1. These nanocrystals are grown on tapered indium phosphide nanowires using
chemical beam epitaxy, resulting in high-quality, defect-free single crystals with electron
mobilities up to 29 500 cm2V−1s−1 [92]. With this method, lengths of L = 2.8±0.2 µm ,
widthW = 470±80 nm, and thickness t = 105±20 nm have been achieved. The Fermi
wavelength of ≃ 30 nm at typical electron densities of 1012 cm−2 [11] places them in the
quasi 2D limit, providing an interesting platform for quantum transport experiments.

3.2 Device Fabrication

The fabrication process of the SQUIDs begins with the as-grown sample of InSb
nanoflags, which are attached to the Indium Phosphide stems. The initial step involves
transferring the free-standing structures onto a highly conductive p-type Si(100) sub-
strate, serving as a global back gate. A 285 nm thick SiO2 layer covers the Si substrate,
acting as a dielectric.

To detach the nanoflags from the stems, the sample is immersed in IPA and soni-
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Figure 3.1: Top view and side view scanning electron micrographs of InSb nanoflags.
Adapted from [92].

cated for 10 minutes. This procedure applies high-frequency vibrations to the sample,
resulting in an IPA–Isopropyl Alcohol suspension of nanocrystals as the nanoflags de-
tach from the stems and disperse in the IPA solution. This suspension is then drop-cast
(20 µL) onto a clean pre-patterned substrate (cleaned in acetone and IPA for 5 minutes
each via sonication) and allowed to dry for 2 minutes, followed by fresh IPA cleaning
for 30 seconds prior to drying with N2 flux. This drop-casting and drying process is
repeated six times to ensure that a sufficient amount of nanoflags is transferred onto
the substrate. The transferred InSb nanoflags are visualized by a Scanning Electron Mi-
croscope (SEM) to identify their coordinates on the substrate. High-resolution images
(6144×4608 pixels2) are captured, enabling further processing using a Computer-Aided
Design (CAD) process in the Elphy software. The left image of Fig. 3.2 shows the result
of the deposition process. The nanoflags are randomly scattered, with some impurities
(mainly nanowire stems) remaining as residues from the transfer.

Figure 3.2: Left: Scanning electron micrograph of the chip after the deposition of InSb
nanoflags. Right: Scanning electron micrograph after the fabrication of contacts lines
to the nanoflags.

Based on the coordinates of the nanoflags observed in the SEM image, an exposure
pattern for the SQUIDs is designed, where the geometry and shape of the superconduct-
ing stripes, as well as the area of the SQUIDs, are planned. This pattern is applied to the
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substrate using electron beam lithography (EBL), a fabrication procedure which directs a
focused beam of electrons onto a polymeric resist material to apply the designed pattern.
The exposed areas of the resist undergo a physical reaction that changes their structure,
allowing them to be selectively removed so that a material, in this case Niobium, at the
end of the process will be present only in specific regions.

For the SQUIDs used in this thesis, the AR 679.04 resist is spin-coated at 4000 rpm for
1 minute followed by baking the sample at 170 ◦C for 90 s. EBL is performed at 20 kV ac-
celerating voltage of electrons, 10 µm aperture, ≈ 33 pA current, and 290 µC cm−2 dose
using a 200 × 200 µm2 write field. After EBL, the pattern is developed in AR 600 − 56
for 1 minute, followed by rinsing in IPA for 30 seconds prior to drying with N2 flux.
The developed pattern is then exposed to O2 plasma (15W for 75 seconds) for descum
to remove any residual resist in the pattern. Prior to sputtering Niobium on the EBL-
patterned sample, to achieve ohmic contacts [93], the exposed area of the InSb nanoflags
is passivated by immersing the sample in [NH4)2Sx (290mM(NH4)2S and 330mM S in
deionized water] at 45 ◦C for 60 seconds, followed by cleaning in deionized water for 30
seconds prior to drying with N2 flux. The sample is then quickly transferred (80 seconds
in air) to the sputtering chamber. 1

Figure 3.3: Bonding procedure. Alu-
minum wires are connected from gold
pads to the chip carrier lines.

Niobium sputtering is performed at 150W
for 240 seconds at a base pressure of 8 ×
10−8 mbar and a working pressure of 5 ×
10−3 mbar in the presence of Ar. The sput-
tered sample is then kept in acetone overnight
for the lift-off process, followed by cleaning in
IPA for 30 seconds. The final device, after the
lift-off process, is displayed in the right image
of Fig. 3.2.

After completing the fabrication process,
the sample chip is glued to a dual-in-line chip
carrier using highly conductive silver paste,
which enables the operation of the back gate.
The individual SQUIDs are then connected
to the chip carrier’s lines by Aluminum wire
bonding (as shown in Fig. 3.3) that represents the link between the µm-sized SQUIDs, to
the macroscopic experimental apparatus that is used to probe their physical properties.

1Even if quickly is not a scientific term, there are some limitations in what is achievable in the fabrica-
tion facility. Studies have shown that the passivation effect does not last very long, and exposure to light
and atmosphere rapidly degrades the passivating layer [94, 95]. Given that not everything is done in situ,
between the fabrication steps there is the necessity to transfer the sample from one location to another.
Thus, there is a minimal amount of time (compatible with security measures) required to move the sample
to the magnetron sputtering machine.
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3.3 Cryogenic Setup

The physics that is studied in this thesis involves cooling down electrons to low tem-
perature. While at room temperature there is no need in specify which temperature, at
low lattice temperatures, the interaction between electrons and phonons (quantized vi-
brations of the lattice) becomes weaker. This means that energy exchange between the
electrons and the lattice is less efficient, allowing the electrons to maintain a different
temperature from the lattice. In the experiments presented in this thesis, the electrons
are not directly cooled. The cooling is achieved by lowering the temperature of the sam-
ple holder, which then by thermal coupling leads to cooling of electrons in the sample
[96]. 2

Initially, a detailed description of the cryostat is provided. This is followed by an
explanation of the techniques employed to cool down the electrons in the sample.

3.3.1 Closed Cycle Dry Cryostat
The cryostat used in this thesis is the "DRY ICE 300 mK Continuous He-3 Cryostat"

which is a closed cycle system designed to operate continuously at 300 mK. A closed
cycle cryostat is a system where there is no need for continuous replenishment of cryo-
genic fluids like liquid helium, which in recent years as become more expensive. It fea-
tures a single shot base temperature of 300 mK and a continuous base temperature of
350 mK. Photographs displaying the inside of the cryostat are provided in Fig. 3.4. To
cool electrons to sub-kelvin temperatures, a He4-based pulse-tube cooler and a combi-
nation of cryogenic fluids, He4 and He3, are employed. They act in synergy to enable the
sample to reach the target temperature. This is achieved through different temperature
stages, which isolate the sample from the room-temperature environment and provide
progressive cooling.

Pulse-tube cooler To achieve a temperature of few K, the basic apparatus consists in
using a Pulse-Tube cryocooler, that includes a compressor, a cold head, and a heat ex-
changer. The principle of working consist in the compressor that pressurizes the cryogen
(in this thesis He4, but also versions with He3 are present [98]), which is then expanded
in the cold head to produce cooling. The heat exchanger facilitates the transfer of heat
from the sample to the cryogen, allowing the system to reach and maintain the desired
low temperatures. The heat is then dissipated by further water cooling the compressor.
Such systems can operate continuously and for extended periods, reducing the need for
frequent maintenance. [99]

Cryostat schematic The different temperature stages are represented by different
plates, displayed in Panel (a) of Fig. 3.4 from high temperature to low temperature. The
room temperature plate is not shown and resides on top of the cryostat. It is important
as electrical grounding of the sample holder originates from there. The following stages
are present:

2Today this is not the only way possible, it is also possible to cool-down electrons directly [97] by
combining on-chip coolers with substrate cooling.
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• First Stage (50-80K) : The first stage is cooled by the initial expansion of the refrig-
erant gas, using the pulse tube cooler described above. The cycle of expansion and
compression of the pulse-tube cooler is repeated continuously, creating a steady-
state cooling effect. This stage is responsible for removing the bulk of the heat
from the sample and from the lower plates. The temperature is usually around
50-80K.

• Second Stage (4-10K): The second stage is also cooled by the compressor. This
stage brings the temperature down to around 4K. The importance of this stage is
that, below 4.2K, the He4 liquefies, condensing in the 1K pot (panel (b)).

• Base Temperature Stage (below 1K): The sample resides on the bottom of this plate
and is thermally coupled to the He3 pot (panel (b)), which below a certain temper-
ature3, holds liquid He3.

Figure 3.4: (a) Photograph highlighting the different plates of the cryostat. (b) Photo-
graph highlighting the 1K (He4) pot and the He3 pot. (c) Cold findger with the low-pass
filtering system.

To suppress thermal leaks from black body radiation, the cryostat is equipped with two
stages of radiation screens. These screens are crucial in minimizing the heat load from
thermal radiation. At low temperatures, even small amounts of heat can significantly
impact the performance and stability of the cryostat. The radiation screens act as barri-
ers, reflecting and absorbing thermal radiation from warmer components, protecting the

3according to the He3 pot pressure
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colder stages of the cryostat. This helps maintain the desired low temperatures and im-
proves the efficiency of the cooling system. Moreover, even with the right temperature
conditions of the sample holder bath, thermal radiation actively suppresses the Joseph-
son effect investigated in this thesis, and hence a good radiation screening is required in
any low noise setup for superconductivity.

The sample, as shown in Fig. 3.3, is mounted on the cold finger depicted in panel
(c) and attached to the lowest plate. It is not visible in panel (a) due to the necessity of
placing the sample inside the superconducting magnet.

Cooling to 300 mK As mentioned before, by employing the pulse tube only temper-
atures of few K are reached due to its limited cooling power. The use of two additional
circuits of cryogenic fluids, He3 and He4, allows for further cooling by exploiting the
fundamental difference between them. At the thermodynamical level, the main differ-
ence between He3 and He4 is their vapor pressure as function of the temperature and
represented by the phase diagrams in Fig. 3.5.

Figure 3.5: Vapor pressure vs tem-
perature phase diagram for He3
and He4. At equilibrium, above
the solid line the liquid phase is
present, while below the gas form
is the stable phase. Adapted from
[100].

He3 is lighter, resulting in a weaker binding energy
between atoms and a lower latent heat of evapora-
tion L, p ∝ exp (−L/RT ), allowing for the evap-
oration process to occur more easily. This leads to
a higher vapor pressure for He3 compared to He4,
enabling lower liquid temperatures at the same va-
por pressure. 4 At the base temperature achievable
by the pulse tube, liquid He4 at atmospheric pres-
sure (≈ 1000mbar in the figure) can be formed and
deposited in the 1K pot. By pumping on the 1K pot
and reducing its pressure, a temperature of approx-
imately 1.5 K can be achieved, allowing the con-
densation of He3 gas into its liquid form. By reduc-
ing the pressure above the liquid He3, the system
reaches the base temperature of 300 mK. This pro-
cess is known as single-shot mode. In this mode,
the cooling power is derived from the latent heat
of evaporation of the He3, which is continuously
pumped away, maintaining the low temperature.
This method is particularly useful for experiments
requiring low temperatures for a limited duration,

as it provides a stable and efficient cooling environment. However, for long measure-
ments, this method cannot be followed, as the liquid He3 is consumed and will eventually
be depleted. In such cases, the continuous mode is employed. In continuous mode, the
evaporated He3 gas from the liquid is collected and re-cooled by the 1K pot (liquid He4)
to be condensed back into the liquid form. To facilitate this process, liquid nitrogen cold
traps are also employed. These cold traps use the cryopumping effect to freeze any im-
purities in the gas, which may arise from contaminants in the pipelines. This ensures

4Additionally, He3 consists of three nucleons, making it a Fermion, while He4, with four nucleons, is
a Boson—a difference that can be used in more advanced cooling method: the dilution refrigeration.
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that the He3 gas is purified before being re-condensed, maintaining the efficiency and
effectiveness of the cooling system. By continuously recycling the He3 gas, the sys-
tem can sustain low temperatures for extended periods, making it suitable for long-term
experiments and measurements. Following the procedure described above allows the
obtain a bath temperature of 350mK.

Low-pass filtering As mentioned before, at low temperatures there may be a discrep-
ancy between the electronic temperature and the bath temperature. Experimentally,
because the thermometers are thermally anchored to the sample holder, the accessible
quantity is the temperature of that part of the experimental setup, which is distinct from
the system of interest: the electrons in the sample. To ensure that the electronic temper-
ature reaches the bath temperature, all forms of excitations that can heat the electrons
must be eliminated. Previously, the role of radiation screens in suppressing black body
radiation was mentioned, but that is not the only source of excitation. The sample is con-
nected to room temperature instrumentation, which injects high frequency noise that
indirectly heats the electrons. To suppress that type of noise, the cold finger is filtered
using two stages of RC and π filters, as represented by the two green boards in panel (c).
It has to be underlined that the filtering is applied to each line, not just the measurement
lines, as the key point of the filtering is not just to achieve more sensitive measurements.

It is important to note that improper filtering may result in suppressing supercon-
ductivity, even in samples that do possess this property [101]. The π filters are used
to eliminate RF noise, and the RC filters eliminate the noise at lower frequency, with a
cut-off frequency of 8 KHz. This ultimately allows to observe superconductivity.

3.4 Measurement Setup

3.4.1 Instruments
To perform transport measurements, the experimental setup must be capable of in-

jecting and detecting currents, as well as applying and detecting voltages, both as AC
excitations with a specific frequency and as DC with a constant bias. The key compo-
nent, as well as their roles, are the following:

• Voltage source: provides a constant or variable voltage to a circuit. It maintains a
fixed potential difference between two terminals, regardless of the current drawn
by the load. We used are the Yokogawa GS200 , and the Keithley 2614B voltage
source.

• Current source: supplies a constant or variable current to a circuit. It maintains
a fixed current through its terminals, regardless of the voltage across the load. In
the experiments we used a Keithley 2600B (it can serve both as current and voltage
source), to feed a current through the superconducting magnet.

• Lock-in amplifier: A lock-in amplifier detects and measures small AC signals in the
presence of noise. It uses phase-sensitive detection to extract the signal at a specific
reference frequency, effectively filtering out noise at other frequencies. This is
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done by multiplying the input signal with a reference signal and then passing it
through a low-pass filter. The Stanford Research SR850 is used in the experiments.

• Current Preamplifier: A current preamplifier amplifies small current signals to a
measurable voltage level. It converts the input current to a voltage using a tran-
simpedance amplifier, which consists of an operational amplifier with a feedback
resistor. This allows for accurate measurement of low current signals. In the ex-
periments we used the Stanford Research SR570.

• Voltage Preamplifier: A voltage preamplifier amplifies small voltage signals to a
higher level for further processing or measurement. Such an amplifier uses an
operational amplifier with high input impedance and low output impedance to
boost the signal without significantly loading the source. The Stanford Research
SR560 was employed.

• Multimeters: used to measure voltage, current, and resistance. They operate by
selecting the appropriate measurement mode and range, and then using internal
circuitry to measure the desired parameter. In the experiments presented in this
thesis, they are used to measure the voltages, and operate by employing analog-
to-digital converters. Two Agilent 34000 series 6 1

2
Digit Multimeter are employed.

• Temperature controller: The controller allows to control the temperature of the
sample. It increases the temperature through heaters, resistors that inject heat by
Joule dissipation. It uses thermometers to monitor the temperature and adjusts the
heating elements accordingly to maintain a stable temperature. This is achieved
using a feedback loop, where the controller continuously compares the measured
temperature to the setpoint and makes necessary adjustments to keep the temper-
ature within the desired range (PID control). The Lakeshore Model 340 Temperature
Controller is used.

3.4.2 Voltage bias and Current bias

Investigating the properties of the devices involves typically the measurement of the
resistance of the system as a function of external parameters.

How to measure the resistance can greatly vary according to the transport regime
and to the absolute value of the resistance, and different methods are available. When
taking the voltage - current characteristics, mainly two methods are used: current-bias
and voltage-bias.

Current bias involves applying a fixed current to the device and measuring the result-
ing voltage drop. This method is particularly useful for studying the voltage response of
a system under a controlled current flow, and allows to study the differential resistance
(δV/δI|Ibias). Instead, Voltage bias consist in applying a fixed voltage to the device and
measuring the resulting current.
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One method is not strictly better than the other. For example, if the measurement of
a large resistor is needed, the voltage-bias method would be more appropriate, as cur-
rent sources would typically fail in applying reasonable value of currents for very large
loads. At the same time, when studying the physics of Josephson junctions and SQUIDs,
using one method over the other changes the behavior of the device. Using the second
Josephson relation (φ̇ = 2eV̄ /h), a fixed voltage drop across the junction results in high
frequency supercurrents, that average to zero when measured with a DC setup.

In the typical measurement performed in this thesis, a current bias is realized through
a bias resistor, Rbias, typically 1 − 10MΩ. The bias resistor is connected in series with
the sample and the wiring of the cryostat. For a constant applied voltage V̄ , if the
impedance of the sample is much smaller than the impedance of the bias resistor, such
that: Rsample ≪ Rbias the following approximation holds:

Ibias =
V̄

Rsample +Rbias
≃ V̄

Rbias
,

resulting in a bias current that does not depend on the specifying load of the device,
providing a simple and efficient way to set a fixed current working point.
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4

Results

This chapter is devoted to the original results obtained in this thesis. Two different
geometries of SQUIDs based on InSb-nanoflags will be presented and characterized. A
symmetric configuration, where the two nanoflags have the same geometrical area, and
an asymmetric configuration, with different nanoflag widths. To begin with, character-
ization as a function of back gate voltage is discussed, and after that, the magnetic field
response is presented.

4.1 Devices

dc-SQUIDs with different geometries were fabricated, following the process described
in Sec. 3.2. The superconducting material of the SNS junctions is Niobium (Nb), and the
semiconducting material are nanoflags of InSb. The scanning electron micrographs of
two representative devices are shown in Fig. 4.1 and Fig. 4.2. The geometrical parame-
ters (length, area) are measured with the Image Processing Toolbox offered by MATLAB,
using the scale bar included in the images, and are reported in Table 4.1. In this chap-
ter, the results for the devices C2S4 and H6S4 are reported. I will refer to them as the
symmetric SQUID and the asymmetric SQUID, respectively, where the terms symmetric
and asymmetric refer to the geometrical features of the devices. Notice that control of
the carrier density in the semiconductor is obtained by a global back gate made from
p-doped Silicon, placed 285 nm below the SiO2 substrate. I underline that the control of
each semiconducting channel in the two Josephson junctions forming a SQUID is not
independent, and is performed globally by the back gate.

L1 L2 W1 W2 AJJ1 AJJ2 Aloop

SYMM.(C2S4) 200 200 380 380 0.11 0.11 13.6
H6S1 120 200 1500 250 0.30 0.07 75

ASYMM.(H6S4) 180 190 1700 530 0.44 0.14 118

Table 4.1: Geometrical parameters of the devices presented. Subscripts i refer to the
Josephson junction i, visually displayed in Fig. 4.1 and Fig. 4.2. Lengths in nm, areas in
µm2. For the area of the junctions, AJJi, twice the London penetration depth of Niobium
has been included (λL = 43 nm [102]).
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Figure 4.1: SQUID designed in a symmetric geometry. A zoom of the single junctions is
displayed in the right panels. [C2S4]

Figure 4.2: SQUID designed in asymmetric geometry. A zoom of the single junctions is
displayed in the right panels. [H6S4]
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SQUID in symmetric geometry In the left panel of Figure 4.1, a SQUID with a sym-
metric geometry is shown. Zoom on the single Josephson junctions is displayed in the
right panels. The geometrical parameters of both junctions, measured from the SEM
images, are equal within the experimental error. The loop inductance is calculated to be
Lgeo = 9.4 pH, using the tool provided at [103], which considers the loop as rectangu-
lar with sides of 9 µm and 4 µm and with circular cross section of radius1 r = 0.36 µm.
The kinetic inductance is instead estimated to be around Lkin = 0.3 pH using eq. 2.44,
leading to a total inductance L = 9.7 pH.

To understand the contribution of the loop self inductance to the behavior of the
device, an estimate of the screening parameter, βL = 2πLIc

Φ0
, is required. If this parameter

is not negligible, then the flux inside the loop can differ by a substantial amount from
the applied flux, and precise calculations of the inductance are needed. Considering
Ic = 100 nA, which is the order of magnitude of the measured critical currents in the
following, the screening parameter is calculated to be of order βL ≈ 10−3. As such, the
correction to the flux due to the self-inductance is considered negligible leading toΦext ≈
Φ, where Φext is the applied "macroscopic" flux and Φ is the effective flux penetrating
the loop.

SQUID in asymmetric geometry In the left panel of Figure 4.2, the SQUID with an
asymmetric geometry is presented. Zoom on the single junctions is also displayed in
the right panels. In this device, one junction is three times wider than the other, while
maintaining the same distance between the electrodes. Following a similar analysis as
for the symmetric geometry, the total inductance is estimated to be L ≈ 20 pH, still
giving βL ≈ 10−3. Thus, the assumption Φext ≈ Φ is valid also for this device.

4.1.1 Superconducting Parameters

A description of induced superconductivity in the semiconductor cannot begin with-
out briefly discussing the properties of the superconducting banks. The sputtered Nb
electrodes can be characterized first by two quantities: the critical transition tempera-
ture at zero magnetic field (Tc) and the upper critical magnetic field at low temperature,
Hc2 (T ).

In Fig. 4.3 and Fig. 4.4, measurements of the superconducting properties of the Nb
strips are presented. The measurements are performed on different devices on the same
chip of the symmetric SQUID, and are done by current biasing the Nb strips with 1 µA,
measuring the voltage drop while changing the temperature (Fig. 4.3) or the applied
perpendicular magnetic field (Fig. 4.4). The critical temperature measurement shown
in Fig. 4.3 displays a sharp transition at 8.1K, while the upper critical field transition
displayed in Fig. 4.4 is 2.9T, both consistent with values reported in literature [104]. A
residual resistance below the transition is observed in Fig. 4.3, a feature observed also
in other Nb strips and attributed to superconducting domains presents in the strips with

1In the case discussed, the cross section is not circular, but an effective radius can be calculated by
taking the perimeter of the cross section C = 2.3 µm (strip width 1 µm and thickness 0.15 µm) and
dividing it by 2π.
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other critical temperature and resistance.

Figure 4.3: Critical temperature of Nb
strips, measured on a device (D2S5)
on the same chip as the symmetric
SQUID and at zero applied magnetic
field. Since it was not possible to mea-
sure the voltage drop just across Nio-
bium, the resistance of the device is in-
cluded. Tc = 8.1K.

Figure 4.4: Upper critical field measured
at T = 850mK, on a device (C2S3) on the
same chip as the symmetric SQUID. The
magnetic field is applied along the per-
pendicular direction to the device plane.
µ0Hc2 = 2.9T.

With a superconducting critical temperature of 8.1K, I can use eq. 2.12 to get the
superconducting gap in the leads, obtaining ∆(0K) = 1.2 meV. At the same time, by
using the Fermi velocity of InSb, an estimate of the coherence length in the ballistic limit
is provided with the BCS relation:

ξN =
ℏvF,N
π∆∗ ≥ ℏvF,N

π∆

Using vF = 1.5 · 106 m s−1 in InSb [9], ξN ≥ 420 nm is obtained. Comparing the co-
herence length with the electrode distance L = 200 nm provided in Table 4.1, sets the
devices in the short-junction regime.

4.2 Two Josephson Junctions in parallel

Two Josephson junctions embedded in a superconducting loop form a superconduct-
ing quantum interference device, in which the phase drop across the two junctions is not
independent, but rather connected by the flux quantization condition discussed in Sec.
2.4.1. If the flux enclosed in the loop is zero, i.e., there is no external magnetic field ap-
plied and the self-inductance of each arm is negligible, the SQUID is well summarized
by describing it as two Josephson junctions in parallel.

The first characterization of the devices is a description of the field effect in the nor-
mal state. After that, I’ll present the field effect on supercurrent. The section is concluded
commenting the features of the differential conductance as a function of the voltage bias.
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4.2.1 Conductance measurements

As described in Sec. 2.4.3, from the transfer curves of semiconductors (conductance
vs back gate voltage) information on field effect mobility, contact resistance, and channel
threshold voltage is obtained. Using dc-SQUIDs with parallel Josephson junctions, the
total conductance is just the sum of the two conductances of the single junctions:

GSQUID = GJJ,1(Vth,1, µ1, Rc) +GJJ,2(Vth,2, µ2, Rc), (4.1)

where GJJ,i is the conductance of junction i, Vth,i is the channel opening threshold, µi

is the field-effect mobility, and Rc is the effective contact resistance. The expression for
the single junction conductance is given by eq. 2.45.

The contact resistances are assumed to be the same for all interfaces, keeping the
number of parameters reasonable. A physical motivation for this assumption is the fact
that, being an asymptotic parameter at high back gate voltages where RN ≪ Rc, two
different contact resistances in parallel could not be distinguished without having very
different channel thresholds or without being able to control the single junctions.

To measure the conductance in the normal state, an AC setup in current bias is used
with an excitation of 1V amplitude on a bias resistor of Rbias = 10MΩ (that, when
Rbias ≫ RN corresponds to 100 nA of current bias) at a frequency of 13.321Hz, mea-
suring both the voltage and the current with lock-in amplifiers. The conductance is
obtained dividing the amplitude of the current signal by the amplitude of the voltage
signal. While in the symmetric SQUID the conductance was measured up to Vbg = 40V,
due to higher leakage currents, the measurements on the asymmetric SQUID are limited
to Vbg < 20V. When the temperature is below the Nb critical temperature, the normal
state is obtained by suppressing the induced superconductivity in the semiconductor
with the current bias.

Symmetric SQUID The normal state conductance of the symmetric SQUID at a tem-
perature of 2K is presented in Fig. 4.5. Going from lower to higher back gate voltages,
zero conductance is observed where the chemical potential is in the band gap, followed
by a quasi linear increase and ending with a saturation value. From this description, no
notable differences are found with respect to the same trace of a single Josephson junc-
tion [105], confirming the symmetric behavior of the SQUID.

To get the mobility and other physical parameters, first the fit procedure was per-
formed with the asymmetric model given by eq. 4.1. The threshold parameters Vth,1 and
Vth,2 as well as the field effect mobilities µ1 and µ2 were very similar and not different
enough to motivate one or two additional parameters. This result is also supported by
the symmetric geometry under study. Therefore, a symmetric model consisting in the
parallel of two identical Josephson junctions is employed. The result of the fit is shown
in Fig. 4.5 with the residuals of the fit below. The optimal parameters are given in Ta-
ble 4.2. An effective field effect mobility of µ = 8900(300) cm2V−1s−1 corresponds to a
mean free path of ≈ 150 nm at back gate voltages around 20V. Comparing this length
with the electrodes distance of 200 nm places the device in a crossover regime between
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the ballistic and diffusive cases. The threshold Vth = 1.9(1)V obtained from the fitting
procedure is overestimated due to the fact that the two semiconducting channels truly
open at slightly different voltages.

Figure 4.5: Top: Conductance trace measured at T = 2K of the symmetric SQUID.
The fit (red line) is superimposed on the experimental data (black squares). Bottom:
Residuals of the fit.

Symmetric SQUID JJ1 (= JJ2)
µ [cm2V−1s−1] 8900± 300

Vth [V] 1.9± 0.1
Rc [Ω] 334± 5

Table 4.2: Optimal parameters of the fit procedure using the model of eq. 4.1 for the
symmetric SQUID using twice the conductance of a single channel. The geometrical
parameters used are indicated in Table 4.1.

Asymmetric SQUID The conductance trace of the asymmetric SQUID at T = 2K
is reported in Fig. 4.6 together with the fit. Using an asymmetric model, two different
channel thresholds and two different mobilities are obtained as optimal fit parameters,
reported in Table 4.3. It is not possible to assert which junction has the higher field-effect
mobility between the two. It is possible to link the mobilities to the threshold voltages,
since the slope of the conductance near the channel opening thresholds is related to that
channel mobility.

Using the values of the mobilities and channel thresholds, at a back gate voltage of
15V, one nanoflag has an elastic mean free path of lmfp = 300 nm (the one with higher
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mobility), while the other one has 150 nm, placing one junction in the ballistic regime
and the other in a crossover regime. Notice that the latter value is consistent with the
one obtained earlier in the case of the symmetric SQUID, where both single Josephson
junctions are fabricated with the same geometry as the narrower junction in this asym-
metric configuration.

Figure 4.6: Top: Conductance trace measured at T = 2K of the asymmetric SQUID.
The fit (red line) is superimposed on the experimental data (black squares). Bottom:
Residuals of the fit.

Asymmetric SQUID JJ1 JJ2
µ [cm2V−1s−1] 18600± 950 9700± 500

Vth [V] 2.2± 0.1 6.2± 0.1
Rc [Ω] 147± 2 147± 2

Table 4.3: Optimal parameters of the fit procedure using the model of eq. 4.1 for the
asymmetric SQUID using two different channels. The geometrical parameters used are
indicated in Table 4.1. The normal state conductance was measured at T = 2K.

This would suggest that the junction with the higher threshold of Vth = 6.2 V is the
narrow one. However, based on normal state characterization alone, it is not possible
to confirm this definitively; additional characterization in the superconducting state is
required for further insights.

4.2.2 Voltage - current characteristics

To characterize the dissipationless regime, a DC current bias setup is used. By chang-
ing the current bias and measuring the voltage drop across the devices, V − I curves are
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obtained. Two examples of V − I curves are shown in Fig. 4.7 and Fig. 4.8, for the two
investigated devices, respectively.

Figure 4.7: Voltage drop measured as
a function of the current bias for the
symmetric SQUID. Vbg = 20V, T =
350mK. The applied magnetic field
is adjusted such that reductions in the
critical currents due to quantum inter-
ference are not present.

Figure 4.8: Voltage drop measured as
a function of the current bias for the
asymmetric SQUID. Vbg = 18V, T =
350mK. The applied magnetic field
is adjusted such that reductions in the
critical currents due to quantum inter-
ference are not present.

As a general trend, going from negative values of current to positive, first a linear
relation between current and voltage drop is seen, followed by a sudden jump to zero of
the voltage for a finite value of current bias, showing finite supercurrent. When mea-
suring V − I curves, a difference is often observed in the current value at transition
depending on whether the transition is measured from the resistive state to the super-
conducting state or vice versa. The current at the transition from the superconducting
to the dissipative state is called the switching current, while for the reverse situation,
it is called the retrapping current [23]. This different, hysteretic behavior is a common
feature of superconducting devices such as Josephson junctions and tends to disappear
(resulting in equal switching and retrapping currents) as the temperature increases. The
value of the switching currents depends on several variables, including the current bias
ramp rate, the switching mechanism, the presence of noise, and others. A more detailed
discussion is provided in Appendix A, where this topic is addressed in more detail. In
this thesis, the switching current is the one used to estimate the critical current.

Differences between switching and retrapping currents have been attributed to the
difference in the electronic temperature when going from the resistive state to the su-
perconducting one; the power injected in the device Pin = V Ibias is non-zero in the
resistive state and zero in the superconducting state [106], resulting in electron heating
in the first case. It is also known [47] that a finite capacitance of the junction can cause
a difference between switching and retrapping current (underdamped regime). Besides,
the presence of a consistent thermal current noise component 2ekbT/ℏ in the current
bias might reduce this difference. In the performed experiments, no notable difference
was typically seen between switching and retrapping current at T = 350mK and above.
In one case, at the base temperature of T = 310mK, I report a substantial difference be-
tween these two values, as displayed in the V − I curve in Fig. 4.9.
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Figure 4.9: Voltage drop measured as a function of the current bias for the symmetric
SQUID. Vbg = 20V, T = 310mK.

At a temperature T = 350mK, the thermal current noise is 14.7 nA, enough to sup-
press hysteresis. The role of the thermal noise in the V −I curve can also be appreciated
in Fig. 4.10. At a temperature of 350mK, premature switching events are seen. These
features can be explained with the tilted washboard potential model discussed in Sec.
2.3.5. When the phase particle is thermally excited, it can move out of one local min-
ima towards another one, where it stops. In this way, when using the second Josephson
relation, φ̇ = 2eV/ℏ, the phase acquires a non-zero average derivative, giving rise to a
non-zero average voltage drop that can be detected in a DC setup. The thermal excitation
measured in the figure has a range consistent with the expected theoretical prediction,
δIth ≃ 15 nA.

Figure 4.10: Positive branch of the V − I . Premature switching events to the normal
state are due to thermal current noise δIth = 2ekbT/ℏ. Here seen at T = 350mK.

If the supercurrent features originate from the Josephson effect, the combination
with the field effect of semiconductors allows for the implementation of the Josephson
Field Effect Transistor (JoFET). By acting on a back gate, the carrier concentration in
the normal part (the semiconductor between the superconducting leads) can be varied,
directly impacting on the amplitude of the supercurrent flow. To demonstrate that the
fabricated SQUIDs also behave as JoFETs, V − I curves as a function of the back gate
are measured. The results are shown in the color maps in Fig. 4.11 for the symmetric
SQUID and in Fig. 4.12 for the asymmetric SQUID.
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The differential resistance, obtained via numerical differentiation of the V −I curves,
is plotted against back-gate voltage and current bias. Dark regions, representing the
superconducting phase, are separated from the normal region by the coherence peak,
visually displayed as a bright line highlighting the transition. The same features found
in the normal state transfer curve are observed in these supercurrent transfer curves,
reinforcing the connection between conductance (number of modes, transmission co-
efficients) and supercurrent amplitude. Supercurrent pinch-off is demonstrated in both
devices, excluding Nb accidental shorts or other transport channels different from the
InSb nanoflags, confirming their behavior as JoFETs. Interestingly, the pinch-off point
for the supercurrent does not coincide with the channel opening threshold. This indi-
cates that the supercurrent transport regime is changing from the SNS-type regime to
an exponentially suppressed tunneling regime as the semiconductor chemical potential
is brought in the band gap.

Figure 4.11: Back gate control of the criti-
cal current for the symmetric SQUID at T =
350mK.

Figure 4.12: Back gate control of
the critical current for the asymmetric
SQUID at T = 350mK

The connection between the conductance (inverse of resistance) of the devices and
the critical current can be further explored using an important parameter for supercon-
ducting electronics: the IcRN product. In Josephson junctions, this characteristic voltage
gives information on the quality of the superconducting coupling to the banks, and its
parametrization has been often used to gain insight to the physics of Josephson junc-
tions [23, 107, 108]. For the case of SQUIDs at zero magnetic field, having two junctions
in parallel we expect:

Ic = Ic,1 + Ic,2 (4.2)

RN =
RN,1RN,2

RN,1 +RN,2

(4.3)

Defining x =
RN,2

RN,1+RN,2
, the fraction of the normal resistance of junction 2 over the sum

of the two normal resistances, and expanding the product, is possible to show that:

IcRN = V1 · x+ V2 · (1− x) ,
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i.e. the IcRN product of a SQUID is the weighted average of the Vi = IciRNi products
of the two junctions.

To measure the normal resistance RN of the SQUIDs, superconductivity should be
totally suppressed; one way of doing this is by applying a large voltage to the junction,
such that eV > 2∆. In measuring the V − I curves as a function of back gate voltage
of Fig. 4.11 and Fig. 4.12, this condition is not satisfied, as at most tens of microvolts
of voltage drop are developed. Hence, the displayed resistance in the figures is not the
normal resistance, RN , but provides a lower bound for its value and I will be referring
to it as the switching resistance, R.

When using the switching resistanceR to calculate the IcR product, the lower bound
on the normal resistance translates into a lower bound on the IcRN product. In the case
of the symmetric SQUID, the normal state resistance satisfying eV > 2∆ was also mea-
sured for a few values of the back gate, and only small deviations are observed from the
corresponding switching resistance, as shown in Fig. 4.13.

Figure 4.13: Product of the critical
(switching) currents times the nor-
mal resistance RN (red squares) and
times the switching resistance R (black
squares) for the symmetric SQUID.

Figure 4.14: Product of the critical
(switching) current times the switching
resistanceR for the asymmetric SQUID.

In the Figure, the IcRN product is displayed in red, while in black the value of the
ICR product. The latter was computed from the measurements of Fig. 4.11. The differ-
ence between the two values is limited to O(10 µV), motivating the use of R to have an
estimate of the characteristic voltage IcRN . For the asymmetric SQUID, the switching
current times the switching resistance is plotted in Fig. 4.14. The values obtained for the
two devices do not differ and completely overlap, suggesting similar superconducting
coupling. Both the IcR product are modulated with the field to a saturation value, a
trend consistent with what is reported in the literature[109, 108]. The value of IcRN of
≈ 30 µV is larger with respect to previous devices reported in the literature. In [9] an
IcRN = 16 µV was measured in similar junctions with a titanium inter layer between
the semiconductor and the superconductor. This larger number is not due to having two
junctions in parallel, as we expect half of the normal resistance and double the critical
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current. We attribute it to the fact that having eliminated the Ti interlayer from the
fabrication process, the induced superconductivity has been strengthened. Indeed, most
models of CPRs in different limits predicts Ic to be proportional to ∆∗/RN [110, 45],
with a proportionality factor that depends on the temperature, on the transparency of
the interface, and on the number of modes [111, 112]. The induced gap ∆∗ arises via the
proximity effect, described in Sec. 2.3.2. A schematic of the induced gap region in the
SNS junctions used in this thesis, is represented in Fig. 4.15.

Figure 4.15: Adapted from [10].
The superconducting Nb has a gap
of ∆, while the InSb nanoflag prox-
imized has a renormalized gap ∆∗

To quantify the induced superconducting gap
∆∗, measurements of subharmonic gap structures
are often performed. This kind of investigation
consist in measuring dips or peaks in the differ-
ential conductance of the I − V curve and pos-
sibly look for structures with harmonic periodic-
ity. These structures, if corresponding to multiple
Andreev reflections (MARs), allow to estimate the
induced gap, as they depend on 2∆∗/n, where n
is the order of the Andreev reflection. The simple
physical picture of MAR is complicated by the fi-
nite transparency of the junctions that leads also
to normal reflection processes. For SQUIDs, hav-

ing two junction in parallel, the same voltage drop is not guaranteed to give rise to
the same coherent processes in the two junctions, and a rigorous theoretical treatment
should take into account the differences between the two junctions.

An I − V curve measured up to high voltage bias region (V > 3meV) is shown in
panel (a) of Fig. 4.16. Panel (b) shows the differential conductance of the I − V curve,
measured with the lock-in amplifier technique. This measurement is performed at 20V
of back gate voltage and a temperature of 440mK.

Figure 4.16: (a) current as a function of the voltage applied to the symmetric SQUID
(black line) at T = 440mK. and Vbg = 20V A linear fit in the region of high voltage bias
is superimposed (red). Iexc = 427 nA, 1/RN = 40e2/h. (b) Differential conductance,
measured with a lock-in amplifier. Subharmonic gap structures are visible and indicated
by arrows.
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From the linear fit of the I−V curve of Fig. 4.16 (a) in the region where eV > 2∆, the
normal resistance can be extracted. In addition to that, typically a non-zero intercept is
estimated, called excess current if it is positive, defect current if it is negative. It originates
from the fact that each electron that is Andreev-reflected contributes to a transfer of
charge |∆q| > e, resulting in deviations from the normal state current [113]:

Iexc = I − V/RN (4.4)

The intercept estimated from the linear fit is Iexc = 427 nA, with a corresponding IexcRN

product of 280 µV. For a Josephson junction, this quantity is proportional to the induced
gap by the superconductor. Not including the effect of a proximity layer with an induced
gap ∆∗, the excess current is proportional to the superconducting gap with a coefficient
that is 8/3 in the ballistic regime [31] to (π2/4 − 1) in the diffusive transport regime
[114]. It is important to underline that these results were obtained not including a prox-
imity layer, as its presence decreases the excess current[34]. Therefore, are not directly
applicable to the SNS junctions discussed in this thesis.

For SQUIDs, following a similar analysis done for the IcRN product, it is an average
of the product of the single junctions. In fact, since excess currents in the two junctions
arise from contribution to the current due to Andreev reflections–a process of charge
transport where one electron is converted to a Cooper pair–they sum up linearly for
parallel channels of transport. In the presence of a proximity layer, no simple relation
between the excess current and the induced gap has been derived, and explicit calcula-
tions are needed. The transparency of the interface between Nb and InSb must be taken
into account, along with the critical temperatures Tc of the electrodes and the proxi-
mized layer T ∗

c . These parameters are not available and must be estimated from further
measurements. Therefore, from the numbers estimated it is possible to provide a lower
bound for the induced gap, which is different according to the transport regime. From
∆∗ > 105 µeV in the ballistic regime to ∆∗ > 190 µeV in the diffusive regime.

As mentioned above, from the differential conductance curve it is possible to esti-
mate the induced gap. In particular, if the subharmonic gap structure features follow an
harmonic series (the one of MARs), the induced gap is the proportionality coefficient of
the series. The correct and complete investigation should look for the structures in the
differential conductance (peaks and dips) and follow their evolution changing different
parameters as back gate, temperature, and magnetic field, which was beyond the scope
of this work.

To interpret the subharmonic gap structures (SGS) shown in panel (b) of Fig. 4.16,
it is insightful to analyze each feature. The normal state resistance RN is reached for
|V | > 2meV, and several other SGS features are visible, indicated by arrows. These fea-
tures are present also in the differential conductance spectra below 0.5meV. Previous
investigations of the differential conductance did not report subharmonic gap structures
at voltages above 0.5mV.

To interpret these SGS features, a model is needed that takes into account the entire
spectra displayed by the measurement. The model that takes into account the prox-
imity effect in ballistic SNS Josephson junction is the one developed by Aminov et al.
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[34]. Their theory predicts in the case of a superconductor with gap ∆S and a proxim-
ity layer with induced gap ∆N a harmonic series at eVn = 2∆N/n, a series at eVn =
(∆S +∆N)/n, and another series at eVn = (∆S −∆N)/n, the latter series appearing as
peaks. The height of these peaks depends on the transparency between the supercon-
ductor and the normal material. The physical picture behind these resonant voltages,
discussed in Sec. 2.3.2, is that the Andreev reflection processes are occurring between
the ∆S and ∆N interfaces.

To compare the results with their theory, the signal-to-noise ratio is improved by
averaging between positive and negative bias values of the differential conductance. The
result is displayed in the panel (a) of Fig. 4.17. In panel (b), the theoretical calculated

Figure 4.17: (a): Differential conductance data, averaged between positive and negative
values. The arrows indicate the value predicted by the theory of Aminov et al. [34] for
∆S − ∆N and ∆S + ∆N . (b): Normalized differential conductance calculated in [34]
including the proximity effect. Curve 1 is at T = 0, curve 2 is at T/Tc = 0.7, curve 3 at
T/Tc = 0.9, and curve 4 at T/Tc = 0.95. The upward and downward arrow indicate the
SGS at ∆S −∆N and ∆S +∆N .

curve for the normalized differential conductance is shown. Indeed, several features are
reproduced. From their treatment it follows that the series of SGS at 2∆S/n should
not be visible and the dip at features reported above for 2∆/n should be understood as
∆S+∆N . Comparing the experimental data with the prediction of the theory of Aminov
et al., displayed in Fig. 4.17, would imply that, at the temperature of 440mK and back
gate 20V:

• ∆S −∆N = 0.75meV

• ∆S +∆N = 1.7meV

which means ∆S = 1.22meV and ∆N = 475 µeV. The ∆S is in strong agreement with
the BCS Niobium gap, while ∆N confirms the order of magnitude of previous estimates.

4.3 Interference in a magnetic field

In this section I will present experimental results in presence of an external mag-
netic field perpendicular to the plane defining the SQUID geometry. I will thus show
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and discuss interference phenomena for both SQUID geometriesa. The physical reasons
behind superconducting quantum interference were widely discussed in Sec. 2.4. For
convenience, I briefly repeat here the key points:

1. The total supercurrent flowing through the SQUID is the sum of the individual
supercurrents carried by each junction, and is a function of the superconducting
phase drop across each junction φi :

ISQUID (φ1, φ2) = I1 (φ1) + I2 (φ2) (4.5)

2. Neglecting the magnetic flux penetrating each Josephson junctions, the super-
conducting phase drops φ1 and φ2 are not independent, but related via the flux
quantization condition:

φ1 − φ2 = 2π
Φ

Φ0

, (4.6)

where Φ is the flux enclosed in the SQUID loop and Φ0 the superconducting flux
quantum. In this way the critical current of the SQUID reads:

Ic (Φ) = max
φ1

ISQUID (φ1,Φ) , (4.7)

and is only a function of the enclosed flux. Thus, the specific interference pat-
tern Ic (Φ) depends directly on the current phase relationship I (φ) of the two
junctions.

To obtain interference patterns, V − I curves are measured at each applied magnetic
field by sweeping the current bias. The magnetic field H⃗ is applied perpendicularly to
the device plane with a superconducting magnet, and a linear relation is assumed with
the flux density, B⃗ = µ0H⃗. In this way, the two quantities are interchangeable and for
convenience I will only be using the magnetic flux density, B⃗. First the experimental
results for the symmetric SQUID are reported, followed by the result on the asymmetric
SQUID.

4.3.1 Symmetric SQUID

The approach followed in presenting the experimental data is as follows: the impact
of the magnetic flux on the loop is discussed separately from its effect on individual
junctions. When discussing the SQUID interference caused by the area enclosed by the
loop, the magnetic field values are such that the Fraunhofer pattern effects are negligible.
2 Afterward, the single junction interference effects are presented.

Loop Interference In Fig. 4.18, from panel (a) to panel (d) the superconducting quan-
tum interference patterns at four different back gate voltages for the symmetric device
are shown, at a temperature T = 350mK. The scale bar on the right, indicating the
differential resistance, is the same for all four back gate voltages. The differential resis-
tance is calculated by numerical differentiating the voltage along the current direction,

57



Figure 4.18: (a) - (d) Color-maps of the differential resistance as a function of the current
bias and magnetic field applied perpendicularly to the symmetric SQUID. (a), (b): The
two interference patterns show partial destructive interference. (c), (d): Interference
patterns showing total destructive interference.

and dividing it by the step used in the current sweep.

The black regions, representing the superconducting regime, are periodically modu-
lated with the applied magnetic field. This behavior is typical of a SQUID interferometer.
When the switching currents are higher than 50 nA, the type of switching is sharpest, so
that the separation between normal and superconducting regime appears more distinct,
while for smaller values such separation appears more blurry as thermal excitations are
non negligible and carry finite voltage, making the transition to the superconducting
state more rounded. This causes the maxima of the interference pattern to appear more
bright, while the transition from the superconducting state to the normal state in the
minima is more smooth.

In panel (a) at a back gate of 20V, for every value of the magnetic field shown, su-
perconductivity is not completely suppressed by destructive interference. In fact, the
minima of the interference pattern occur for finite value of current bias. The periodicity
of the pattern, ∆B, corresponds to an area Aeff = Φ0/∆B ≈ 26 µm2. In panel (b), at a
back gate of 12V, this effect is reduced, as the minima in the critical current interfer-
ence pattern move towards zero current. In addition to that, as the field effect reduces
the amplitude of the supercurrent by lowering the back gate voltage, the amplitude of
the modulation of the interference pattern, and its average value are reduced. Further

2For areas A = 0.1 µm2, at an applied perpendicular field of magnitude B = 100 µT, the flux pene-
trating the junction would be ΦJJ = 0.004Φ0.
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decreasing the back gate voltage in panel (c), the interference pattern does not only de-
crease its amplitude, slowly fading away, but it is also modulated to zero, as the minima
in the supercurrent amplitude reach zero current.

For the values of magnetic fields in which the interference pattern shows minima
causing total destructive interference (Ic(Φ) = 0), there is a balanced situation in which
each arm of the SQUID carries equal amounts of supercurrent with opposite sign (i.e.,
opposite direction), canceling the net supercurrent transport across the device and giv-
ing an overall ohmic shape of the V − I curves. This effect is also reported in panel (d),
where the region where the V − I curves are ohmic is wider compared the same region
in panel (c). In each period, a region with a developed superconducting plateau in the
V − I curve corresponds to approximately half the period.

Changing the back gate voltage does not change the periodicity, which remains con-
stant to a value of Aeff =≈ 26 µm2 for all the explored back gate voltages.

Further investigation of the interference phenomena was performed exploring the
temperature behavior of the SQUID pattern. This is reported in Fig. 4.19, where the back
gate voltage was fixed at 20V and four different temperatures are plotted. As the tem-
perature is increased, the supercurrent amplitude of the interference decreases, along
with its modulation. Near T = 1.55K the minima have reached zero current, display-
ing total destructive interference and giving a symmetric behavior of the device. Since
higher harmonics in the CPR tend to decay faster with increasing the temperature[45],
the simple physical picture of the sinusoidal CPR is expected to hold at higher temper-
ature, where the observed interference pattern is symmetric.

Before analyzing further the experimental data, it is worth to linger on one impor-
tant parameter in a SQUID: the effective area. From the figure it is evident how also
changing the temperature does not affect the periodicity, which is consistent with the
one of the back gate, thus the effective area, calculated with the ratio of the flux quantum
to the magnetic field periodicity, Aeff = Φ0/Bperiodicity, has remained constant in every
measurement. The observed periodicity in both Fig. 4.18 and Fig. 4.19 corresponds to
an effective area Aeff = 26.1 µm2, which is larger than the geometrical area measured
from the SEM images of Ageo = 13.6 µm2. The difference in the two areas is a factor
Aeff/Ageo = 1.9. For consistency, it is worth investigating the origin of this difference.
One hypothesis that is often proposed to explain this effect is a phenomenon called flux-
focusing.

This is a peculiar effect caused by having superconducting Nb stripes, which show
both zero resistance and also the expulsion of the flux density B⃗ from the bulk (Meissner
effect). Due to the Meissner effect, the uniform magnetic field H⃗ applied to the device
corresponds locally to a different distribution of the flux density, which can increase
(focus , Aeff/Ageo > 1) or decrease (defocus , Aeff/Ageo < 1) the effective magnetic flux
enclosed in the superconducting loop. The ratio of the effective area to the geometri-
cal one is called focusing factor and, when its origin lies only in the Meissner effect of
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Figure 4.19: (a) - (d) Supercurrent interference patterns measured at different increasing
temperatures, at a back gate voltage of 20V. Panel (a) to (c) refer to the color-bar on top,
while to increase the visibility, the color-bar for panel (d) was changed and is displayed
next to the panel.

the superconductors around the device 3, it can be completely determined from the ge-
ometrical features by performing electrostatic simulations with commercial softwares.
Since this goes beyond the scope of this work, a qualitative agreement can be sought
with a model that contains the essential physics. The model consist in assuming a sym-
metric screening for the superconducting strips, such that the half the width of the Nb
strips deviates the flux density inside the loop and the other half outside the loop. This
is displayed in Fig. 4.20, where half of the Nb strip area has been included for the cal-
culation of an effective area that takes into account the focusing effect. The estimated
area this way is ≈ 24.2 µm2, in good agreement with the area estimated from the inter-
ference pattern 26.1 µm2. Thus, I conclude that deviations from the geometrical area of
the interference pattern area are caused by the Meissner effect of the Nb loop, and that
at low magnetic field the only cause of the interference is the flux quantization condi-
tion (eq. 2.39) occurring in the loop. Hence, SQUID-type interference on the device is
demonstrated. Additional insight on the physics of the device is provided by increasing
the applied magnetic field, entering in a regime in which one previous assumption–the

3There may be cases in which deviations from the expected periodicity happen due to other phenom-
ena, like crossed-Andreev reflections, which here are negligible as the distance between the arm in the
interferometer (4 µm) is very large compared to the size of Cooper pairs in Niobium (ξ = O(100 nm) ≪
4 µm) [15].
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Figure 4.20: SEM image of the symmetric SQUID showing the area to calculate phe-
nomenologically the flux focusing. An effective area of 24.2 µm2 is obtained, in good
agreement with the 26 µm2 estimated from the SQUID periodicity. The small difference
might arise from the wide Nb electrode pictured in the top half of the image.

magnetic flux penetrating each junction is negligible– is not valid anymore.

Single-Junction Interference So far, the superconducting quantum interference ef-
fects reported were caused only by the superconducting loop with tens of square mi-
crons of area. With a superconducting flux quantum constant of Φ0 ≃ 2.069mT µm2

this area corresponds to magnetic fields of hundreds of µT. In addition to that, the only
degree of freedom considered for the superconducting phase difference φwas across the
two Josephson junctions, assumption limited to lumped, point-like, junctions. Joseph-
son junctions have in fact finite width and length that correspond to small, but non-zero
area. The values of areas displayed in Table 4.1, when compared with the value of Φ0,
give the order of magnitude for the magnetic field to produce significant single junction
interference phenomena: with areas of fractions of µm2 this corresponds to several mT.

Figure 4.21: Zoom on a single
junction of the symmetric SQUID
to display the longitudinal (y-axis)
and transverse (x-axis) direction to
the junction.

Increasing the value of the applied magnetic
field to this order of magnitude unlocks a new
degree of freedom for the superconducting phase
dropφ that was not considered before: the one par-
allel to the junction width. Referring to Fig. 4.21,
non-negligible flux penetrating the single junction
allows for the phase to vary also along the x coor-
dinate such that φ = φ (x, y). As discussed in Sec.
2.3.6, these phase shifts inside the single junction
are widely used to probe the supercurrent spatial
distribution, and are a strong tool for the investi-
gation of the properties of the supercurrent. When
the supercurrent is distributed uniformly inside the
junction, these effects manifest in the form of the
"Fraunhofer" interference pattern, where a central
peak in the supercurrent versus magnetic field is
displayed, accompanied with a series of evenly spaced interference minima.
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In Fig. 4.22(a), the superconducting quantum interference pattern for the symmetric
SQUID is shown up to magnetic fields of 20mT for a back gate voltage of 20V and at a
temperature of 350mK. Zoom-ins at different points are reported in panels (b), (c), and
(d), around −18mT, −11mT, and −0.5mT, respectively. The color-bar on top refers
to the panels (a), (c), and (d), while for panel (b) another color-bar range was used to
increase visibility.

Figure 4.22: (a),(c),(d) Differential resistance color-maps referring to the color-bar on
top. (a) Single junction interference pattern for the symmetric SQUID. (b) Zoom near
18.5mT, where interference disappears, indicating in a more precise way the field at
which supercurrents goes to zero. Color bar is changed with respect to the other panels
to increase contrast. (c) Zoom near 11mT, showing a balanced SQUID behavior. (d)

Zoom near 0mT, showing partial destructive interference in the SQUID pattern already
reported in Fig. 4.18 (a).

Since the supercurrent vs. magnetic field is a function of a slow (single junction)
component with a rapid (loop) component on top, to avoid artifacts in the visualization
of the interference pattern, a proper sampling rate in the magnetic field is required. In
fact, a poorly sampled interference pattern might contain fictitious minima related to
the information of the area, which, in the end, could lead to misunderstandings about
the underlying physics of the system. Following the Nyquist-Shannon theorem, alias-
ing is avoided by sampling at twice the highest frequency present in the signal. In our
terms, this means that at least two points per SQUID period are needed. Because of this,
measuring a single junction interference pattern with a SQUID modulation on top is an
extremely time consuming task; therefore, only a half single-junction interference pat-
tern is measured (from 0mT to −20mT).
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In panel (a), it is observed that superconducting quantum interference happens both
at the level of the single junction with a monotonous, Gaussian shape reported in the
past [9, 10, 11], and at the level of the superconducting loop. The envelope of the in-
terference pattern presents only one central lobe without any side lobes4. Moreover,
if two junctions with different areas are connected to form a SQUID, the two different
envelopes should be visible simultaneously. Here, however, no notable distortions were
observed compared to what is expected from a single Josephson junction, suggesting
that the two junction areas are very similar and that the single junction interference
minima corresponds to the same area. In fact, according to the SEM images, they are
identical within the experimental error, which is negligible in this case.

To calculate the area corresponding to the Fraunhofer minima, which is expected
to occur when B0 = Φ0/AJJ, the condition Ic, envelope(Φ) = 0 should be satisfied. From
panel (b) of Fig. 4.22 the magnetic field at which a interference is lost is estimated to
be around B0 = 18.5mT. Converting this value with Φ0 gives an area of 0.11 µm2, in
excellent agreement with the geometrical parameters of both junctions displayed in Ta-
ble 4.1 which give a geometrical area of AJJ = 0.11 µm2. This suggest that at the single
junction level, no focusing effect is happening and AJJ,eff/AJJ = 1.

Further evidence that the estimated area corresponds to the area of both the single
junctions, rather than just one, is found in the underlying loop interference pattern.
As long as SQUID-type modulation is observed, it indicates that supercurrent is flowing
through both arms of the SQUID. If the supercurrent were suppressed in one arm, the flux
quantization condition would no longer hold, and SQUID modulation would disappear.
Additionally, the absence of deviations from the SQUID-type periodicity throughout the
entire single junction pattern, along with the consistent effective loop area across all
magnetic field values, supports this conclusion. In summary, the analysis confirms that
the measured area accurately reflects the collective influence of both junctions, ensuring
reliable data interpretation in varying magnetic field conditions.

One interesting observed property is that when the applied magnetic field |B| is
greater than ≈ 10mT, total destructive interference between the two arm is seen, as
highlighted by panel (c), in contrast with the partial destructive interference shown in
panel (d) and in Fig. 4.18 and Fig. 4.19.

Concluding the experimental overview of the interference data for the symmetric
SQUID, it has been demonstrated that SQUID-type interference is present at high values
of magnetic field and coexists with the single junction "Fraunhofer" interference pattern.
This coexistence highlights the complex interplay between the two types of interference,
providing valuable insights into the behavior of the system under varying magnetic con-
ditions. Moreover, the properties of the SQUID interference were shown to be tunable
via a back gate. By adjusting the back gate voltage, it was possible to modulate the value
of the minima in the interference pattern. At high back gate voltages, the minima ex-
hibited a non-zero current value, indicating partial destructive interference. In contrast,

4The range of magnetic fields explored for this device was up to 40mT, confirming the absence of
supercurrent above 20mT.
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at low back gate voltages, the minima reached zero, indicating complete destructive in-
terference. This tunability underscores the versatility of the system and its potential for
fine-tuning electronic properties through external controls.

4.3.2 Asymmetric SQUID

In the asymmetric SQUID one junction is three times wider than the other. This was
achieved by contacting one InSb nanoflag along its wider direction and the other along
its narrower direction. As for the symmetric device, the interference versus back gate,
temperature, and magnetic field is explored, first focusing on the loop interference, and
then analyzing the single junction interference effects.

Loop Interference The interference patterns at T = 350mK for four different back
gate values are shown in the four panels of Fig. 4.23. Starting from panel (a), a typical
asymmetric interference pattern is shown. For finite values of current bias, a zero differ-
ential resistance is present, thus showing supercurrent. The maximum supercurrent that
can flow through the device is modulated with the magnetic field on a µT scale, display-
ing interference. The type of interference displayed corresponds to a partial destructive
interference, as the interference pattern does not modulate to zero for any value of the
magnetic field shown. When the back gate voltage value is reduced, (panels (b) and (c))
, the modulation amplitude of the interference decreases, disappearing completely at
Vbg = 4.0V.

Figure 4.23: (a) - (c) Asymmetric SQUID interference patterns at different values of back
gate. (d) SQUID-type interference disappears at a back gate of 4V, indicating that su-
percurrent is flowing only through one arm.
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When the back gate voltage is below 4.5V, one nanoflag is pinched off and does not
carry supercurrent. In this case, the flux quantization condition does not hold anymore,
as the supercurrent flows only in one arm of the SQUID, not enclosing any magnetic
flux. For these values of back gate voltage, the asymmetric SQUID behaves as a single
Josephson junction since the arm that carries the supercurrent, having zero-resistance,
"shunts" the other arm. This remarkable property of the device demonstrates the ability
to switch on and off the interference effect with a single back gate.

In a second cool-down of the device, the interference pattern at different tempera-
tures was measured and is shown in Fig. 4.24 at a back gate voltage of 15V, where both
the Josephson junctions carry supercurrent, displaying interference. While the period-

Figure 4.24: (a)-(d) Asymmetric SQUID interference patterns at different temperatures.
The data displayed are measured during a second cool-down of the device, where the
values of the critical current as well as the normal state conductance were reduced with
respect to the first cool-down.

icity of the pattern was preserved, the maximum amount of supercurrent was reduced,
a probably because the samples was exposed to thermal cycles and stress. The tempera-
ture behavior shows that the SQUID interference pattern is asymmetric up to values of
T ≃ 1.5K, where the minima are near zero current.

The measured magnetic field periodicity for the asymmetric SQUID interference pat-
tern does not change with temperature and back gate also for this device. Using the
superconducting flux quantum to convert the periodicity to the effective SQUID area,
Aeff = 149 µm2 is obtained, against a geometrical area of Ageo = 118 µm2. The result-
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ing ratio between the two area Aeff/Ageo = 1.26 is lower with respect to the symmetric
SQUID. This is expected, as the ratio of the total Nb strips area, which is the amount that
contributes with the flux focusing, with respect to the loop internal area is reduced and
as such the focusing factor is also reduced. Repeating the procedure done with the sym-
metric SQUID, we can consider the focusing to come from half the Nb strips, as shown in
Fig. 4.25. An area of 149 µm2 is found, in perfect agreement with Aeff = 149 µm2 found
from the SQUID interference pattern.

Figure 4.25: SEM image of the asymmetric SQUID highlighting the flux focusing area.
The criterion used was to take the path at the center of the superconducting loop. An
effective area of 149 µm2 is obtained, in perfect agreement with the area of 149 µm2

obtained from the SQUID pattern periodicity.

Single-Junction Interference For the asymmetric SQUID, when increasing the mag-
netic field to enter the single-junction interference regime, two different areas are now
in "resonance" with the superconducting flux quantum. Referring to the classical Fraun-
hofer pattern, the Josephson junction with the smaller area will correspond to minima
in the interference pattern at higher magnetic fields with respect to the minima in the
pattern of the junction with a larger area. The interference pattern of the symmetric
SQUID at high values of the magnetic field is shown in Fig. 4.26. From a loop area of ≈
100 µm2 to a single junction area of ≈ 0.1 µm2, there are three orders of magnitude of
difference which, by reciprocity, correspond also to three orders of magnitude of differ-
ence in the magnetic field range that characterize the interference effects of these areas.
To save time in the measurements, the V − I curves at higher value of magnetic fields
are restricted to lower current bias since the supercurrent is low at high magnetic fields
In addition to that, only the transition in one direction is measured, from low to high
current bias, such that the switching phenomena is the one measured. It has also to be
highlighted that the information density carried in the color-map in Fig. 4.26 is too high
to be able to distinguish each characteristic, and a process of data manipulation is needed.

On top of a rapid SQUID-type interference pattern, a slowly-varying envelope is
modulating the supercurrent amplitude, due to interference happening at the level of
the single junctions. To better visualize the non-trivial shape of the envelope, the rapid
SQUID-oscillation component has to be factorized out. To achieve this, the maximum
value of the switching current for every 10 V − I curves is extracted (that corresponds
to ≈ 100 µT steps against a 10 µT SQUID periodicity) and is plotted on top of the dif-
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Figure 4.26: Single junction interference pattern of the asymmetric SQUID. Features re-
sembling a full interference minima are present at B = ±10mT, while a "shoulder" is
present near 3mT.

ferential resistance, at the average magnetic field value of these 10 V − I curves, in the
color-map in Fig.4.27. A "shoulder" in the critical current values around 3mT is present.
A full destructive interference minima is seen at 10mT.

The clear advantage of the method used to factor out the SQUID oscillation is that it
is very simple and allows for a quick visualization of the envelope; the problem is that
the feature that one can resolve are limited by the number of points over which the su-
percurrent maxima are taken. Sharp minima, if present, would not be distinguishable.
At the same time, if too few points are used, then the SQUID component would be still
visible and appear as spurious, non-physical minima.

Instead of interpreting the SQUID rapid component as a limit to the visualization of
the Fraunhofer pattern, is it possible to think of it as a local probe to the working point
in the single junction interference pattern: if in the neighborhood of a certain magnetic
field SQUID-type oscillations are observed, flux quantization holds and the supercurrent
is flowing through both arms. On the contrary, if these oscillations are not observed, then
one junction must be in a "Fraunhofer" minima, carrying zero supercurrent and lifting
the flux quantization condition in the loop.

In Fig. 4.28, the values of the switching currents from Fig. 4.26 are plotted for two
ranges of magnetic field. The switching current was determined as a described in Ap-
pendix A. The superimposed high frequency modulation is due to the loop interference.
It is clearly visible that for magnetic field B = 3.0± 0.5mT , B = 6.0± 0.5mT (panel
(a)), and B = 9.5 ± 1mT (panel (b)), the amplitude of the high frequency interference
component is reduced, suggesting that locally one junction carries little supercurrent,
and is near a Fraunhofer destructive interference minimum.

The full minima of the interference pattern of the whole SQUID Ic(B = 9.5mT) = 0
occur because the area of the two junctions are in ratio ≃ 3 one to the other, such
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Figure 4.27: Interference pattern of the asymmetric SQUID in the range (−30, 30)mT
with the envelope critical currents (green squares) superimposed, which highlight the
single junctions interference. The non-trivial shape is attributed to the two single junc-
tions of different area.

that the first minima of the smaller junction corresponds (within a certain range) to the
third minima of the other. Most notably, the third minimum was never observed for
Josephson junctions made with InSb nanoflags. The SQUID "interferometry" provides
strong evidence that, in the alternative geometry where the Niobium contact is made
along the wider direction of the nanoflag, these type of Josephson junctions can display
multiple minima.

It is worth underlining that when one arm is in a destructive interference condition,
the total critical current of the device can still be nonzero, as the other junction is not
expected to have necessarily suppressed the supercurrent. This was also underlined in
Sec. 2.4.4, where the expected single junction interference pattern was shown in Fig.
2.15 for an ideal SQUID with the same parameters of the asymmetric SQUID fabricated
in this thesis. The analytical model developed assumed for simplicity sinusoidal CPRs,
but the overall trend predicted is confirmed here.

The motivations given above allow to conclude the reduction in the modulation am-
plitude of the SQUID-type interference can be attributed to the minima in the "Fraun-
hofer" pattern of each junction.

Looking at the geometrical parameters given in Table 4.1, the two areas of 0.44 µm2

and of 0.14 µm2 are in a ratio:

Rgeo = AJJ1/AJJ2 = 3.14

Looking at the ratio of the first minima of the smaller junction, B = 9.5± 1mT to the
first minima of the greater junction B = 3.0± 0.5mT, the following value is obtained:

Reff = Aeff,1/Aeff,2 = B0,JJ2/B0,JJ1 = 3.16± 0.6
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Figure 4.28: (a), (b) Critical (switching) currents extracted from the interference pattern
shown in Fig. 4.26, showing the high frequency (SQUID) modulation with a low fre-
quency (junction) envelope. (a) Zoom of the data near the central lobe, where a reduction
in the amplitude of the SQUID modulation is indicated by arrows atB = −3.0±0.5mT
and B = −6.0± 0.5mT. (b) Zoom near the first full minima indicated by the arrow at
B = 9.5± 1mT.

The ratio between the effective areas Reff is in optimum agreement with the ratio be-
tween the geometrical areas Rgeo. This further supports that the estimated areas from
the Fraunhofer area the effective area of the two junction.

Furthermore, Aeff,JJ1/Ageo,JJ1 = 1.55 and Aeff,JJ2/Ageo,JJ2 = 1.56. Both the effective
areas are a factor ≈ 1.5 larger. It is also possible for Josephson junction to display flux-
focusing, depending on the geometry [50].

Measurements on the asymmetric device confirmed the findings of the symmetric
SQUID. Moreover, in the asymmetric geometry, control of the presence of interference
is demonstrated with the action of a single gate that exploits the different response of the
two nanoflags. Thanks to SQUID interferometry, it has also been possible to distinguish
the single junction interference effects even with 3 order of magnitude in difference
in area, as SQUID-type interference is resilient at high magnetic fields. Additionally,
the measurements suggested multiple minima in the "Fraunhofer" pattern of the wider
junction, a feature that was never reported so far, confirming the impact of the length-
over-width ratio in determining the behavior of the critical current under the action of
a magnetic field.

4.4 Josephson Diode Effect in symmetric and asym-

metric SQUIDs

In this section, the experimental results regarding the investigation of the super-
conducting diode effect in the SQUIDs are presented. This newly born research field is
currently under active investigation, and a comprehensive physical understanding has
yet to be established. Therefore, this section will focus on reporting the key results,
commenting on the experimental features, and discussing what can be inferred about
the properties of the devices.
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4.4.1 Superconducting Diode Effect in symmetric and asymmetric SQUIDs
In the measurement of the interference patterns for both symmetric and asymmetric

SQUIDs, the V − I curves were swept in both positive and negative directions, allowing
for the acquisition of transitions related to Isw,+ and Isw,−. In the resulting SQUID inter-
ference patterns, it is found that the minima are slightly shifted, indicating the presence
of the Josephson diode effect. Since this effect is difficult to visualize from the previ-
ously presented figures, Fig. 4.29 provides a zoomed-in view of the minima at a back
gate voltage of 15V and T = 350mK for the asymmetric SQUID.

Figure 4.29: Zoom in around the minima in the interference pattern of the asymmetric
SQUID, measured at a back gate voltage of 15V and T = 350mK, highlighting the shift
in the two minima δB.

The two minima are distinctly shifted by δB ≃ 1 µT, which is a very small quantity
but still noticeable. To understand explicitly the presence of the Josephson diode effect,
consider the following: if the upper switching current Isw,+ is at its minimum value
for a certain value of the applied magnetic field (≈ 9 µT in the figure), the shift in the
magnetic field is such that the switching current in the other direction Isw,− is not at a
minimum. This is a situation for which Isw,+ ̸= Isw,−, corresponding to the diode effect
for current bias values:

|Ibias| ∈ [Isw,+,−Isw,−) (4.8)

In fact, if the curren bias |Ibias| > |Isw,−|, the SQUID is normal in both directions, while if
the current bias is such that |Ibias| < Isw,+ the SQUID is superconducting in both direc-
tions. In the situation in-between, the device is normal in the positive current direction
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Figure 4.30: Left: Demonstration of the Josephson Diode Effect in the symmetric SQUID.
In the top image the difference between the two critical current is displayed. On the
bottom image the corresponding rectification coefficient η The measurement refers to
a back gate voltage of 20V and a temperature of 350mK. Right: The same for the
asymmetric SQUID at a back gate voltage of 18V and a temperature of 350mK.

and superconducting in the other, realizing a superconducting diode for that particular
value of magnetic field.

To characterize how the JDE manifests in both the devices, the difference between
the magnitude of the critical currents5 in the positive and negative directions was cal-
culated and is plotted on the top image in Fig. 4.30, with the rectification coefficient η,
defined by eq. 2.61, and plotted on the bottom image. The situation for the symmetric
SQUID is represented on the left, and for the asymmetric on the right. I underline that no
smoothing procedure or running average was performed to alter the data, and the only
procedure that has been done is the extraction of the switching and retrapping currents
with the method described in Appendix A.

Beginning the description with the symmetric SQUID, both the absolute difference
of the critical currents and the rectification coefficient exhibit a periodic behavior that
is consistent with the periodicity of the SQUID. This consistency confirms that the ob-
served phenomena are not caused by noise. The absolute difference |Ic+|− |Ic−| is mod-
ulated by the magnetic field within a range of 5 nA. Notably, there are magnetic field
values where this difference is positive, and fields where this difference is negative. This
variation directly affects the rectification coefficient, indicating that the magnetic field
can change the polarity of the symmetric SQUID diode. The rectification coefficient does
not appear to be symmetric with respect to the zero current, a feature that needs a more
detailed investigation.

The asymmetric SQUID confirms the modulation of the absolute difference between

5To improve the signal to noise ratio, averaging between switching and retrapping current is per-
formed, since no notable difference is present between those two quantities and JDE is seen on both the
retrapping and switching currents.
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the two critical currents, |Ic+|− |Ic−|, to be within −5− 5 nA range, with the important
difference that the periodic modulation period changes to the µT scale, in agreement
with the asymmetric SQUID effective area. The rectification coefficient shows a remark-
able match with what is observed for Josephson junctions (Fig. 2.20), but with a periodic
behavior. In this case, too, the rectification coefficient can be tuned by the magnetic field,
altering the polarity of the asymmetric SQUID diode and achieving values around 5%.

From the back gate characterization of the SQUID interference pattern, the gate-
tunability of the Josephson diode effect can be investigated. As discussed in [82], the
field effect modulation of the diode effect provides evidence of the semiconducting chan-
nel’s role in giving rise to this phenomenon. In Fig. 4.31 the back gate modulation of the
JDE is presented. For clarity, each curve was shifted by 10 nA.

Figure 4.31: Back gate modulation of the Josephson Diode Effect. The critical current
reported refers to T = 350mK.

In the symmetric SQUID, the amplitude of the modulation of the difference |Ic+| −
|Ic−| remains unchanged when tuning the back gate from 20V to 12V, but is suppressed
at 8V. This is a key property, since at a backgate voltage of 8V, the type of SQUID in-
terference pattern (similar to Fig. 4.18, panel (c)) transitions from not modulating com-
pletely to zero, to showing total destructive interference. To exhibit the Josephson diode
effect, a properly asymmetric SQUID is required, with the two arms having different crit-
ical currents. The asymmetric SQUID consistently exhibits the Josephson diode effect at
all the back gate voltage explored, and only diminishes to zero at a back gate voltage of
4V. At this specific back gate voltage, no interference is observed in the corresponding
SQUID pattern (Fig. 4.23, panel (d)). This occurs because no supercurrent is flowing in
one of the two arms of the SQUID, leading to the absence of the JDE.

It is important to emphasize that the Josephson diode effect displayed is not solely
a property arising only from superconductors. It is possible to argue that if the super-
current is pinched off, then the diode effect would naturally not be visible, since there is
no supercurrent at all. However, this is not the case, as evidenced both by the symmet-
ric SQUID and the asymmetric SQUID. When in the first case the interference pattern
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becomes symmetric, supercurrent can still flow through the device. In the latter case,
when the supercurrent in one junction is suppressed, supercurrent flow is still present in
the other arm. Both arguments confirm that the JDE is indeed attributable to the distinct
behavior of the entire SQUID, including the semiconducting regions.

Having determined that the JDE comes from the key role of the InSb nanoflags, to
understand the role of each arm in the rectification it is possible to compare the rectifi-
cation coefficient at each magnetic field with the SQUID interference pattern. Fig. 4.32,
top image, shows the color-map of the rectification coefficient of the asymmetric SQUID
against magnetic field and back gate voltage, while the bottom image shows the upper
switching current of the SQUID interference pattern for reference. Comparing the two

Figure 4.32: Color map of the rectification coefficient for the asymmetric SQUID, as a
function of the back gate voltage (y-coordinate) and magnetic field (x coordinate). The
fluctuations near Vbg = 4V are due to noise. In the bottom image the upper switching
current as a function of the magnetic field.

it is possible to observe that when the magnetic field is such that the SQUID pattern is
in the minima6, then η changes sign. This observation is consistent with the theoretical
predictions expected for SQUIDs: three conditions should be present at the same time
for a SQUID to be able to display JDE [86]:

1. The external flux should not be equal to a an integer multiple of half the flux
quantum: Φ ̸= nΦ0

2

2. The single junction transmissions should not be equal: τ1 ̸= τ2

6When there is JDE, the minima is not exactly in, e.g., Φ0/2. Referring to Fig. 4.29, it is shifted by
±δB/2, depending if the positive or negative branch of the interference pattern are considered. In the
case discussed, the difference is less than 0.5 µT
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3. At least one Josephson junction needs to be highly transmitting to have a sizable
higher harmonic content in the CPR.

Confirming the expectations that the Josephson junctions based on InSb nanoflags are
highly transmissive and present higher harmonics content in the CPR. [10].

Concluding this section, it is emphasized that the Josephson diode effect (JDE) has
been unequivocally demonstrated in both symmetric and asymmetric SQUID geome-
tries. A rectification coefficient of up to 5% was observed, and this coefficient was tun-
able based on the magnetic field, in a consistent manner with the field periodicity of the
SQUID. This tunability allows for the reversal of the SQUID’s diode polarity by changing
the sign of η on a µT scale. Moreover, the diode effect was found to be gate-tunable, a
key property in attributing the origin of this effect to the InSb nanoflags (point #2). This
gate tunability further supports the presence of non-sinusoidal current-phase relation-
ships within these systems (point #2 + point #3), providing additional proof of the role
of the semiconducting channel in influencing the JDE.

4.5 Discussion

4.5.1 Interference Model
Fitting the interference patterns Ic(Φ) with the correct model requires an a-priori

knowledge of both current phase relationships I1(φ1), I2(φ2) of the two junctions.
To date, no measurements are available for the CPR of InSb nanoflags. Therefore,

the most simple model that describes SQUIDs is the sinusoidal one, presented in Sec.
2.4. Because of its simplicity, it is effective in providing a first description of the SQUIDs.
The following expression is used:

Ic (B, Ic1, Ic2, A, δ) =

√
(Ic1 − Ic2)

2 + 4Ic1Ic2 cos

(
π
BA

Φ0

+ δ

)2

(4.9)

This relation has 4 free fit parameters: Ic1 and Ic2 are the magnitudes of the critical
currents of the two Josephson junctions, A is the effective loop area resulting from the
periodicity of the SQUID pattern, and δ is a phase parameter used to "center" the pattern,
taking into account effects of finite magnetization (rigid shifts in the magnetic field B).

An analysis of the data with this model is useful for an additional reason. The two
parameters Ic1 and Ic2 are related to two variables important for the SQUID interference
pattern Ic(Φ): the modulation amplitude ∆Ic = max Ic(Φ)−min Ic(Φ) and the average
value ⟨Ic(Φ)⟩Φ, where ⟨, ⟩Φ denotes the average over one magnetic flux period. The
connection between these parameters (Ic1 ≥ Ic2) is the following:

Ic1 = ⟨Ic(Φ)⟩Φ (4.10)

Ic2 =
∆Ic
2

(4.11)

By fitting with the sinusoidal SQUID model, I also obtain an estimate of these two quan-
tities, that are characteristic of the interference pattern.
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4.5.2 Sinusoidal model - symmetric SQUID
Back gate dependence The fit procedure using eq. 4.9 was performed on the dataset
presented in Sec. 4.3.1. The fits are performed using a non-linear least-square method,
using the optimization routine offered by the SciPy function curve_fit. One example of
the fit procedure applied to the interference pattern of the symmetric SQUID at a back
gate voltage of 20V and at a temperature of 350mK is reported in Fig. 4.33. The top
image shows the fit (red curve) superimposed on the switching currents (black squares).
In the bottom image the residuals are displayed.

Figure 4.33: Top: Switching currents (black squares) for the data presented in Fig. 4.18
(a), with the superimposed fit (red) using eq. 4.9. Bottom: Residuals of the fit, displaying
an even distribution around zero current, but an overall oscillatory behavior.

The optimal parameters estimated are:

• Ic1 = 32.8± 0.4 nA

• Ic2 = 23.0± 0.5 nA

• A = 26.1± 0.1 µm2

• δ = 0.32± 0.02 rad

An overall good agreement is found between the data and the model. The residuals
of the fit displace evenly around 0 nA in a 5 nA range, but are not randomly scattered,
but show an oscillatory behavior, feature that the whole dataset presented.

This oscillatory behavior comes from the fact that the single sin (φ) component in
the CPR is not able to capture all the physics of the SQUID pattern.
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Figure 4.34: (a) Critical currents obtained from the fitting procedure. Two transport
regime for the SQUID are identified: unbalanced above Vbg = 8V and balanced below.
(b) Average value of the interference pattern and half modulation amplitude.

The fit procedure discussed, when repeated for different values of back gate, allows
to reconstruct the transfer curves for the supercurrent of each junction. As shown in
panel (a) of Fig. 4.34, this allows to determine the transport regime of the device, from
an unbalanced transport regime above Vbg = 8V (where one arm carries more supercur-
rent than the other), to a balanced configuration below 8V where the device behaves as a
symmetric interferometer. Panel (b) displays the average value and half the modulation
amplitude. These values are obtained independently from the fit. The trend, which has
some fluctuations due to noise in the data, reproduces the results of the fit confirming
the equivalence in the description: the interferometer is unbalanced above Vbg = 8V
and balanced below.

Supposing Ic1 and Ic2 represent the critical currents of the two arms, then the width
of the nanoflags measured from the SEM images allows to estimate the maximum critical
current density of each junction. At a back gate voltage of 20V, one arm has a value
Ic1/W = 86 nA µm−1 and the other of Ic2/W = 61 nA µm−1.

Temperature dependence Looking at the temperature behavior of the critical cur-
rents can give additional information on the transport regime of the two junctions. In
Fig. 4.35, the temperature trend of the two fit parameters Ic1 and Ic2 is reported. A sim-
ilar decay in the Ic(T ) curve is found for both junctions, which is rather linear below
0.8K, and then presents a smaller rate of decay, in a convex-like fashion.

It has been discussed that the decay of the critical current with temperature has a sig-
nificant dependence length of the Josephson junction [115]. For long ballistic junctions,
the critical current decreases exponentially with increasing temperature, following the
relation Ic ∝ exp (−kbT/δE) over a wide temperature range, where δE is a character-
istic energy scale. In short junctions, the critical current follows a different temperature
dependence, and when kbT becomes much smaller than the induced gap, it saturates at
a value proportional to the product of the induced gap ∆∗ and the number of transverse
modes in the junction. It has to be underlined that in the past a crossover between a
short-junction regime and a long-junction regime was observed on Josephson junctions
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Figure 4.35: Behavior of the critical current obtained from the fit with temperature. A
similar trend is displayed by both critical currents, which confirm the symmetric physical
behavior of the two junctions. The fit, performed with the KO-2 model, gives T ∗

c1 =
1.81K, T ∗

c2 = 2.0K.

similar to the ones reported in this thesis [10, 116]. The long junction regime was present
at temperatures well below T = 350mK, such that at the temperature explored here,
the long junction regime is already suppressed and the devices are described by a short
junction model. Here we assume that the Ic1 and Ic2 calculated from the interference
pattern with the sinusoidal models are the critical current of the two junctions, and to
use this information to fit the temperature trend with a well-known model. The CPR in
the short ballistic junction limit can be described by the Kulik-Omelyanchuk II model
[10, 117], in which the transmission coefficient of each mode is substituted with one
averaged transmission τ :

I(φ) =
Ne∆∗

2ℏ
τ sinφ√

1− τ sin (φ/2)2
tanh

[
e∆∗

2kbT

√
1− τ sin (φ/2)2

]
, (4.12)

where the gap has the BCS temperature dependence

∆∗(T ) = ∆∗(0) tanh
[
1.74

√
(T ∗

c /T )− 1
]

At 20V of back gate voltage the device was shown to be in a crossover regime between
ballistic and diffusive transport. Hence, the ballistic model for the CPR and not the diffu-
sive model was chosen. From a numerical point of view, having the product of N,∆∗, τ
in the prefactor can lead to complication in the optimization of the parameters. There-
fore, the prefactor is changed to I0, as was done in [11], while keeping the temperature
dependence of the induced gap. The results of the two series of fit are displayed in Fig.
4.35 as the continuous solid line. The only parameter which has the same estimate re-
gardless of the fit details is T ∗

c , which takes the following values:

• T ∗
c1 = 1.81± 0.03K

• T ∗
c2 = 2.0± 0.1K

The values found are compatible with T ∗
c = 1.85K reported in [10].
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4.5.3 Sinusoidal model - asymmetric SQUID
Back gate dependence Fig. 4.36 shows the fit procedure to the data at a back gate
voltage of 15V and at a temperature of 350mK with eq. 4.9 for the asymmetric SQUID.

Figure 4.36: Top: Switching currents (black squares) for the data presented in Fig. 4.23
(a), with the superimposed fit (red) using eq. 4.9. Bottom: Residuals of the fit, evenly
distributed around zero current.

The optimal parameters are:

• Ic1 = 72.8± 0.2 nA

• Ic2 = 23.0± 0.3 nA

• A = 149.0± 0.1 µm2

• δ = 2.37± 0.01 rad

In this case, a better agreement is found between the data and the model, with respect
to the symmetric SQUID, as highlighted from the plot of the residuals. The trend of the
two parameters Ic1 and Ic2, is plotted versus the back gate voltage in the left image of
Fig. 4.37. Both junctions show critical current modulation with the back gate voltage
below Vbg = 12V, and in one arm the critical current goes to zero at a back gate value
of 4.0V.

It is certainly worth trying to assess which is the junction that pinches off the su-
percurrent. However, one problem that could arise in trying to do so is that one fit
parameter, for example Ic1, for some value of the back gate could refer to one arm and,
for some other voltages, could refer to the other. This problem should be highlighted
by a crossing in the two critical current values. This is not observed in Fig. 4.37 and
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Figure 4.37: Left: Critical current values as a function of the back gate voltage, showing
modulation. No crossings are observed between the two parameters, hence the param-
eters belong to the same junction for every back gate value. Right: Critical current
densities calculated thanks to the non crossing behavior. The narrow junction presents
higher supercurrent density, and pinches off at Vbg = 4V.

is possible to state that, for example, Ic1 is the critical current of the same junction for
every value of the back gate plotted (the same applies to the other arm with Ic2).

Most likely, the high-Ic junction is the one 1.7 µm wide and the small-Ic junction is
the one with the smaller width of 0.5 µm. This is supported by the fact that to zero order
we can consider the supercurrent to be distributed uniformly in the junction.

Having attributed each channel to a critical current it is possible to calculate the crit-
ical current densities of each junction, displayed in the right image of Fig. 4.37. At high
backgate voltage, the narrower junction has a higher supercurrent density reaching a
value of Ic2/W = 62 nA µm−1, while the wider one shows a smaller critical current
density of at maximum 40 nA µm−1. The supercurrent density obtained for the narrow
junction is also consistent with was found for the symmetric SQUID, in which the two
junctions had the same geometry, supporting the assumption that wider junction carries
the higher amount of absolute supercurrent, while carrying lower supercurrent density.

To investigate the possibility of calculating the CPR from the interference pattern,
the degree of asymmetry of the device as a function of the back gate, Ic1/Ic2, is a useful
parameter. It is plotted in Fig. 4.38. From a factor of 2 at voltages around 18V, the ra-
tio is increased, up to a maximum of 4.5 at a back gate voltage of 4.5V, with the trend
increasing more rapidly at lower back gate voltages, when one junction is close to the
supercurrent pinch-off point.

As mentioned in Sec. 2.4.6: with a maximum degree of asymmetry of 4.5 it is not
possible to state that the interference pattern perfectly resembles the CPR of the small-Ic
junction. However, from a theoretical perspective, it is valuable to estimate the devia-
tion of the interference pattern from the CPR at this asymmetry ratio. In the worst case
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Figure 4.38: Asymmetry between the two arms of the asymmetric SQUID, calculated as
Ic1/Ic2 at each value of back gate.

scenario7, suppose that the high-Ic junction has a sinusoidal CPR. Modeling the CPR
with eq. 2.31 with a single effective transmission coefficient, τ ∗, it is possible to estimate
the error made when associating the AC part of the interference pattern with the CPR.

To this end, four asymmetric SQUID interference patterns are calculated for the fol-
lowing cases: τ ∗1 = 0 and τ ∗2 = {0, 0.5, 0.7, 0.9}. The AC part of the interference pattern
(as it is usually done) Ic(Φ) − ⟨Ic(Φ)⟩ is compared to the CPR of the small-Ic junction.
As τ ∗2 increases, the interference pattern resemble less the CPR of the small-Ic junction,
and the relative error committed is:

max

(
(Ic(Φ)− ⟨Ic(Φ)⟩)− I2(2πΦ/Φ0)

Ic2

)
=


6% for τ ∗2 = 0

30% for τ ∗2 = 0.5

50% for τ ∗2 = 0.7

> 100% for τ ∗2 = 0.9

Since there is no reason to exclude a high transparency (τ ∗2 ) of the interfaces of the
narrow junction, it is not possible to derive the CPR directly from these measurements.
More advanced numerical methods are required to make any meaningful statements
about the CPR.

Temperature dependence The results of the fit for the temperature behavior at a
back gate of 15V are reported in Fig. 4.39. The left image shows the decay of the crit-
ical currents with temperature, while the image on the right show the behavior for the
supercurrent density. The reduced values of critical currents with respect to the values
shown previously are due to the fact that this dataset come from the second cool-down
of the asymmetric device. A linear trend is found in both junctions, keeping the asym-
metry also at high temperature,with the supercurrent density of the narrow junction
decaying more rapidly. It is noteworthy that the supercurrent persists at temperatures

7As pointed out in Sec. 2.4.6, a strong asymmetry in the critical currents has to hold alongside a strong
asymmetry in the derivatives of the CPRs. The best condition arises when the high-Ic junction is strongly
skewed and the target junction of the CPR measurement is sinusoidal.
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well exceeding one kelvin, which aligns with the observations made in the symmetric
device.

Figure 4.39: Left: Critical current values estimated with the fit procedure of the SQUID
patterns against the temperature. Right Critical current densities, showing a different
decay for the narrow junction (Ic2, red) and the wider junction (Ic1, black).

4.5.4 Numerical Simulations
Thanks to an active collaboration with the group led by Prof. Maura Sassetti from

the University of Genoa, numerical simulations are performed to gain deeper insight
and a better understanding of the physics governing the SQUIDs presented in this thesis.
These simulations have proven to be invaluable in elucidating the behavior observed in
these systems. As this project is still ongoing, the current focus has been on performing
and refining these procedures for the symmetric SQUID. Consequently, the results and
discussions presented here pertain exclusively to this specific device. It is important to
note that the methodologies and findings reported in this section are being subject to
further refinement as the research progresses.

Motivations for a tight-binding approach In the most simple model (Josephson
junctions with sinusoidal CPR), the effect of destructive interference is explained by
the condition of flux quantization and happens for a specific value of the magnetic field
where the superconducting phase drops of the two junctions are out of phase by 180◦;
this has been treated explicitly in Sec. 2.4.2.

When looking at the SQUID interference pattern presented in Fig. 4.18, one notes
that the interference pattern of the symmetric SQUID does not modulate to zero at high
back gate voltage. Different hypothesis can be made to discuss possible reasons for non-
zero supercurrent in the minima of the interference pattern. If the two junctions are
identical, one would naively expect the same critical current of each arm with the same
modulation, such that with the two junction in "antiphase", I1(φ1) = −I2(φ2), the total
current is zero for every back gate voltage.
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To explain the experimental observation that the interference pattern does not modu-
late to zero in the minima, from the standard theory of SQUIDs (that considers junctions
with sinusoidal CPRs), introduced in Sec. 2.4, the following conclusions are possible:

• The two junctions possess different critical current: Ic1 ̸= Ic2.

• The loop has a finite inductance L, with a non negligible screening parameter βL,
and at first order:

∆Ic
Ic

=
1

1 + βL
, (4.13)

such that even with the same critical current, Ic1 = Ic2, the SQUID pattern does
not modulate to zero.

This second hypothesis is discarded immediately, as in Sec. 4.1, I concluded that βL =
10−3, implying that the role of the inductance is negligible. In this case ∆Ic/Ic → 1 and
the SQUID must modulate to zero.

Concluding Ic1 ̸= Ic2, and attributing the values to Ic1 = ⟨Ic⟩ , Ic2 = ∆Ic/2 is not
so direct and correct. Suppose that two junctions with identical, skewed, CPRs and with
the same critical current are connected to form a symmetric SQUID. The skewed CPR
can be represented at zero temperature by eq. 2.31, reported here for convenience:

I (φ) =
∑
j

(
τje∆

h

)
sinφ√

1− τj sin (φ/2)
2
, (4.14)

The "skewness" depends on the transmission coefficients: the lower the τ , the more the
CPR resembles the sinusoidal case. With this CPR, it can be shown that the SQUID
interference pattern does not modulate to zero even with Ic1 = Ic2, as long as the CPR is
skewed. Three interference patterns for the case I1(φ) = I2(φ), calculated numerically
for symmetric SQUIDs with CPR described by the relation written above, with three
transmission coefficients, are displayed in Fig. 4.40.

Figure 4.40: SQUID interference patterns calculated using eq. 2.31 for three different
values of transmission coefficients τ .

If the junction has a sinusoidal CPR, represented by the case τ = 0, then there are
values of the magnetic flux for which Ic(Φ) = 0. If τ ̸= 0, this does not happen, and the
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SQUID pattern does not modulate to zero. Moreover, the more the CPR is skewed, the
more limited is the modulation depth ∆Ic compared to the maximum critical current of
the whole SQUID Ic. This ratio reaches an asymptotic value (from numerical calculations
with τ ≃ 1) of:

∆Ic
Ic

(τ → 1) =
1

2
(4.15)

That also allows to conclude that if ∆Ic/Ic < 0.5, then Ic1 ̸= Ic2 for any skewness.

In the data presented for the symmetric SQUID ∆Ic/Ic > 0.5. Hence one needs to
consider the role of the skewness in "gapping" the symmetric SQUID interference pat-
tern. Using SQUID models based on eq. 2.31 has revealed to be challenging, as the esti-
mated parameters were highly dependent on the initial conditions and were not robust
to small perturbations. Thus, a more in depth, refined, characterization and modeling is
required that keeps into account what has been observed so far.

Tight-binding simulations of the symmetric SQUID Numerical simulations us-
ing the recursive Green’s function method were performed by Dr. Simone Traverso,
Dr. Samuele Fracassi, Dr. Niccolò Traverso Ziani, and Prof. Maura Sassetti from the Uni-
versity of Genoa and by Dr. Matteo Carrega from CNR-SPIN. The procedure is reported
in Appendix B. The tight-binding simulations of the symmetric SQUID are performed
with the following parameters:

1. T = 351mK, consistent with the temperature one measured in the experiments.

2. The normal region has the following parameters: L = 200 nm, W = 380 nm, as
determined from the scanning electron microscope images of the real devices.

3. The induced superconducting gap is set at ∆∗ = 320 µeV. This value is similar to
the one estimated in Sec. 4.2.2.

4. The conversion of the back-gate voltage to the chemical potential in the band is
performed with this expression: µ = 4.12 eV V−1Vbg. The chemical potentials
of the two junctions are the same, motivated by the fact that only one voltage
threshold was observed in the normal state characterization (Sec. 4.2.1).

5. The barriers at the interface for the two Josephson junctions (JJ1 and JJ2) are char-
acterized by strengths of U1= 60meV, U2= 58meV, respectively. The slight differ-
ence in the barrier strengths is justified by the observation of the Josephson diode
effect, reported in Sec. 4.4.

The comparison of the tight-binding simulations with the experimental data is shown in
Fig. 4.41 for two values of back gate . The values 20V and 8V are chosen to represent
"high" and "low" back gate voltages, respectively. At high back gate, the SQUID inter-
ference pattern does not modulate to zero, and a minimum of Isw+ ≃ 10 nA is reported
(top image, left). Instead, at low back gate voltages, the interference pattern modulates
completely to zero and is not "gapped" (top image, right).
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The experimental data support the following interpretation: the two Josephson junc-
tions exhibit slightly different barrier transparencies, which are dependent on the back-
gate voltage. The transparency at each NS interface is [31]:

τ =
1

1 + Z2
,

where Z ∝
√

1
µ

. From point 2, µ ∝ Vbg, with the consequence that at higher back gate
voltages the interfaces are more transparent, while the opposite is true at lower voltages.

Figure 4.41: Comparison between numerical simulation and experimental data for two
values of back gate voltage. The corresponding calculated CPR are plotted in the bottom
row.

The transparency directly affects the skewness of the current phase relations. This
becomes significant for τ > 0.5, corresponding to high back-gate voltages. At 20V, the
current phase relations (bottom image, left) of both junctions are skewed and deviate
from the sinusoidal CPR. As noted in Sec. 4.5.4, if the skewness is relevant, the SQUID
interference pattern does not modulate completely to zero and is "gapped". We attribute
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the origin of the gapped SQUID interference pattern due to the skewness of the current
phase relations.

Moreover, the small asymmetry between the individual transparencies of the Joseph-
son junctions accounts for the diode effect observed at high back-gate voltages. It is re-
marked that this asymmetry alone does not fully explain the gap observed in the SQUID
interference pattern, and the primary reason for this gap is the skewness of the current-
phase relations.

The sinusoidal model, which links Ic2 to the average value of the interference pat-
tern and Ic1 to half the modulation depth, yields Ic2 ≃ 37 nA and Ic1 ≃ 25 nA. When
compared with the numerical simulations which yield both Ic1 and Ic2 ≃ 30 nA , it is ev-
ident (CPR on the left) that the sinusoidal model overestimates Ic1 and underestimates Ic2.

Conversely, at low back-gate voltages, where τ ≃ 0.5, the CPRs tend to become
sinusoidal, see the CPR at 8V in Fig. 4.41. This results in the closure of the gap in
the SQUID interference pattern. In this regime, the simple sinusoidal model predicts
Ic1 = Ic2 ≈ 13 nA. When comparing this prediction with the CPR shown on the right
in Fig. 4.41, there is a better agreement with respect to 20V, in accordance with the
interpretation that the CPR becomes more sinusoidal at lower back-gate voltages.

Thanks to the tight binding simulations, a quantitative estimate of the skewness of
the CPR of the Josephson junction in the symmetric SQUID geometry has been obtained.
The results are consistent with the experimental observation of the diode effect and the
"gap" opening of the symmetric SQUID interference pattern at high back gate voltage.
These findings evidence the role of higher harmonics in the CPR of Josephson junctions
based on InSb nanoflags in determining the behavior of the device.
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5

Conclusionsandfutureperspectives

In this master thesis, the following accomplishments have been reported:

1. The first fabrication of Superconducting Quantum Interference Devices (SQUIDs)
with SNS Josephson junctions based on InSb nanoflags was achieved both in a
symmetric and asymmetric geometry. The corresponding SQUID-type interfer-
ence was observed, leading to the first demonstration of SQUID interference in
two dimensional nanostructures of InSb with a periodicity of Φ0 = h/2e.

2. The devices, in both symmetric and asymmetric geometries, exhibited non- recip-
rocal transport, displaying a tunable Josephson diode effect, with rectification up
to 5%. The rectification can be modulated by the SQUID periodicity and the back
gate. The polarity of the superconducting diodes can be reversed via magnetic
field, by tuning the set-point in the SQUID period.

In the symmetric geometry, the SQUID configuration can be changed from balanced
at low back gate, to an unbalanced at high back gate. In the balanced configuration, it
is possible to suppress the superconducting behavior by total destructive interference
at an integer number of applied half flux quanta: Φ =

(
n+ 1

2

)
Φ0. In the unbalanced

configuration, partial destructive interference is displayed, i.e., the superconducting be-
havior is not completely suppressed by quantum interference.

Numerical simulations indicate that this behavior is attributed to the skewness of
the current-phase relationship. In fact, SQUIDs fabricated with symmetric Josephson
junctions with a skewed current-phase relationship do not manifest total destructive in-
terference. In our study, the skewness of the current-phase relationship is modulated
by the back gate voltage: at high back gate voltages, the current-phase relationship is
skewed, whereas at low back gate voltages, it tends to become more sinusoidal.

In the asymmetric geometry, by suppressing the supercurrent in one arm of the
SQUID, the interference pattern can be effectively extinguished, resulting in the absence
of modulations corresponding to the SQUID periodicity, while still allowing supercur-
rent flow across the device. In both geometries, SQUID interferometry enables to inspect
with precision the single Junctions interference patterns, giving evidence for multiple
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minima in the single junction interference pattern of the wide Josephson junction, a fea-
ture that was never reported in previous devices.

In SQUIDs, to manifest Josephson diode effect, it is mandatory that at least one of
the two junctions possess higher harmonic content in the current phase relationship.
Having observed the diode effect in both the symmetric and the asymmetric geometries,
allows to confirm that Josephson junctions fabricated with InSb nanoflags exhibit a non-
sinusoidal current phase relationship due to the high transparency of the interfaces.

To perform a measurement of the current phase relationship, a stronger asymmetry
than the one obtained in this thesis is required, which can be achieved by two methods.
One method consists in realizing a SQUID in which one arm consist of a InSb nanoflag
Josephson junction in parallel with a superconducting nanobridge. As a matter of fact,
nanobridges are known to exhibit critical currents of several µA and high derivatives
in the current phase relationship, providing optimal conditions for probing the current
phase relationship. The other approach keeps two nanoflags in the SQUID geometry,
but requires the capability to manipulate one or both junctions via local gating. For this
purpose, top gates have already been fabricated and are currently under investigation.

The results obtained in this thesis provide a solid foundation for further studies aimed
at measuring and parametrizing the current phase relationship of InSb nanoflags Joseph-
son junctions by SQUID interferometry.
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A

Critical Current Determination

In the study of superconducting devices, the characterization of the critical currents
as a function of different parameters represents the easiest and most important way to
investigate the properties of these systems. In this appendix, the method used through-
out the thesis to extrapolate the values of the switching and retrapping currents from
the V − I curves is explained and commented, starting with some considerations on the
superconducting transition and proceeding with the description of the algorithm.

Estimating the critical current

Given the V − I curve of a superconducting element, the issue of defining the crit-
ical current at which the element transitions into the normal state has been previously
considered, highlighting the limitations of various definitions. This is because the V − I
characteristics in most situations are not step functions but exhibit a continuous in-
crease in voltage with increasing current from the superconducting to the dissipative
state. The various possible definitions of this quantity make comparisons between ex-
periments challenging and can also affect the shape of the parametrization of the critical
current [118]. Mapping the definition of superconductivity directly onto the definition
of critical current is problematic. Superconductivity can be summarized as a phase of
matter exhibiting both zero electrical resistance and the Meissner effect, but from a prac-
tical perspective, it is clear that demonstrating both simultaneously can be extremely
challenging, if not impossible, for most experimental setups available today. Because of
this, the most commonly used methods rely on identifying regions of zero resistance.
Since this thesis investigates the physics of the Josephson effect, I will discuss the case
of Josephson junctions, with non-obvious extensions to SQUIDs.

In the ideal case, a finite current flows through a Josephson junction without de-
veloping a voltage drop. For this reason, it is often referred to as “supercurrent”. This
happens up to a certain value defined as critical current (Ic), where a transition to a finite
voltage state occurs. Given the Current-Phase-Relationship (CPR) I (φ) introduced in
Sec. 2.3.4, the critical current Ic is defined as:

Ic = max
φ

I (φ) (A.1)
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How the transition from the superoconducting to the dissipative state manifests de-
pends on experimental conditions such as temperature, noise, sweep rate, geometry of
the setup, and other parameters [119]. In the optimal case, a clean step function transi-
tion occurs, as shown in panel (a) of Fig. A.1.

When contributions from noise and temperature are non-negligible, the V − I curve
appears more rounded, as in panel (b). Consequently, the "transition" feature is obscured
by a gradual increase in the average voltage drop across the device as the current bias is
increased.

Figure A.1: (a) V − I curve presenting a difference between switching and retrapping
currents with a sharp and step-like transition. (b) V − I rounded due to thermal excita-
tions. The two curve are acquired at the same value of back gate (20V) but at different
values of magnetic field for the asymmetric SQUID (see main text).

Suppose that no noise is present in the setup, the sweep rate is very low, and the
temperature is zero. In this case, the V − I curve will present a sharp transition, as dis-
played in panel (a). In this scenario, it is unambiguous to determine the current at which
the transition occurs, and many criteria can be developed that will yield consistent re-
sults. Conversely, in the case represented in panel (b), where noise is present caused
by the environment and the electronics, the sweep rate is finite, and the temperature is
non-zero, it is not obvious to determine Ic, since the V − I curve is smooth at every
value of the current. In brief, to interpret the V − I curves in these cases, the dynamics
of the phase difference across the superconducting elements must be taken into account.

It was mentioned in Sec. 2.3.5 that a first understanding is provided by the RCSJ
model, in which the phase dynamics is mapped to the problem of determining the mo-
tion of a particle in a tilted washboard potential. One conclusion that can be drawn
from the model is that the more appropriate quantity that estimates the critical current
is the switching and not the retrapping current, as the latter depends more on out-of-
equilibrium phenomena, such as difference in electronic temperature in the normal state
and sweep rate [106, 120]. Because of this, the efforts in this section are focused on de-
scribing the switching current and the switching mechanisms and assessing whether it
is appropriate to estimate Ic by measuring the switching current.

The simplest switching mechanism occurs by thermal excitation of the phase particle
above the barrier in the tilted washboard potential. By modeling thermal noise as white
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noise (zero average and uncorrelated), in the RCSJ framework it is possible to analytically
calculate the V −I curves for the non-hysteretic case and for sinusoidal CPR. The voltage
difference as a function of the current bias is represented by the following expression1

[47] :

⟨V ⟩ = 2

γ
RIc

exp (πγα)− 1

exp (πγα)

1

T1
(A.2)

T1 =

∫ 2π

0

dφ exp−γ
2
αφI0(γ sin

φ

2
) (A.3)

where γ = ℏIc/(ekbT ), α = I/Ic, and I0 is the modified Bessel function. Some im-
portant limits can be considered in this case: for γ → 0, the case where the ther-
mal energy dominates, V → RI , and no superconductivity can be detected in the
V − I curve. Instead for γ → ∞, the case in which thermal excitations are negligible,
V = 0 for I < Ic; and V = RIc

√
α2 − 1 for I > Ic. Hence is possible to distinguish

precisely a dissipation-less state from a voltage-carrying one. Numerical integration of
eq. A.2 gives the rounded shape for the transition with increasing ratio between the
current thermal noise and critical current, as displayed in Fig. A.2.

Figure A.2: Voltage current characteristic in the presence of thermal noise described by
eq. A.2. High values of γ correspond to the case of low current thermal noise compared
to the critical current. The transition feature at high temperature (low γ) is hidden by
thermal excitations.

For the same value of the critical current, the transition at different temperatures
looks different, as thermal excitations play a major role in the dynamics of the phase.
The average φ̇ is non-zero, resulting in a non-zero ⟨V ⟩ also for currents below the critical
current. It has to be noted that a possible temperature behavior of the critical current

1In stochastic equations, like the RCSJ equations with a random noise component, it is meaningless
discussing the specific value of the solution, as the noise component is a stochastic variable and does not
attain a particular value. However, it is meaningful to discuss the probability that a given variable has a
particular value at a certain time. The quantities reported in the formulae are time and ensemble averages
and should be understood in statistical terms.
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has not been included in the model represented in Fig. A.2: for every value of γ, the
critical current is the same. 2 From this analysis it follows that in the case of rounded
V − I curves due to thermal noise, a more accurate estimate of Ic is obtained by values
of currents slightly larger than those for which the voltage is non-zero.

The distribution of switching current and the switching mechanism in presence of
thermal excitations has been measured and characterized, confirming the power of the
RCSJ framework in making accurate predictions [121]. However, recent investigations
show that the simple picture of only thermal excitation of the phase particle is not al-
ways accurate, as macroscopic quantum tunneling through the barrier or phase diffu-
sion can be the dominant escape mechanism from the potential minima [122, 123, 124].
Because of this, there can be situations where even if thermal excitations are negligi-
ble, premature switching caused by quantum tunneling or phase diffusion can result in
switching currents being only a fraction of the critical current [57]. To discriminate the
escape regime and the switching mechanism, measurements of large numbers of switch-
ing events should be performed, which is not always possible.

However, it has been argued that in the case of only thermal activation of the phase
particle, the switching current is a reliable estimator of the critical current [12]. There-
fore keeping in mind its limitations, the switching current still remains the best ob-
servable for this purpose and efforts towards precise measurements of this quantity are
required. In this thesis, both the switching current and the retrapping current are mea-
sured with one V −I curve in both directions, using a slow sweep rate (each V −I curve
always took more than 1 min, İbias < 4 nA s−1). When there is a substantial difference
between switching and retrapping, the switching current is used to estimate the critical
current.

There are various methods available for determining the switching current, depend-
ing on the physical quantity measured directly, such as differential resistance or voltage.
Measuring derivatives with a lock-in amplifier can be time-consuming when a large
number of curves need to be recorded, and performing numerical derivatives3 on noisy
data with multiple switching events can be challenging. In the dataset acquired, the
voltage is measured while varying the current, and the more appropriate method should
directly involve this quantity to better align with the experimental process. Setting a
"threshold" to the voltage to identify the switching event is the method selected for all
data acquired in this thesis, due to its greater accuracy in the case of noisy data; it is also
consistent with other methods used in the literature [125].

2In SNS Josephson junctions where Andreev Bound States (ABS) carry the supercurrent, the tempera-
ture behavior of Ic ( defined by eq. A.1 ) comes from the thermal occupation of the higher energy ABS, and
from the temperature dependence of the induced gap ∆∗(T ). In this section I am discussing the switching
current at an experimental level and its difference from the critical current.

3Using numerical low-pass filters to ease the differentiation process is not always appropriate as it can
significantly alter the nature of the data, producing artifacts.
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Figure A.3: V − I characteristic and the distribution of the measured voltage in a range
of 10 nA around zero, well below the transition value. From the histogram on the right,
fitted with a Gaussian curve, the standard deviation is identified as σ = 0.4 µV.

Voltage threhsold algorithm

The essence of the voltage threshold method to determine the critical current consist
in the following assessment:

if V ≥ Vthreshold ⇒ Normal state
if V < Vthreshold ⇒ Superconducting state

How the method is implemented for real V − I curves that include voltage fluctuations
is explained in the following:

Step 1 consist in estimating the threshold. Every experimental setup possess a cer-
tain level of noise-floor, which depends on the filtering system, on the electronics, and
on the environment surrounding the sample. The threshold is estimated from the su-
perconducting state, which displays a zero voltage drop. For every V − I curve, the
distribution of voltage values in the superconducting region is analyzed, and plotted in
a histogram, as shown in Fig. A.3. The histogram is fitted with a Gaussian curve, with
the mean and the standard deviation to be determined as optimal parameters. In the case
shown in Fig. A.3, the average is compatible with zero4, while the standard deviation is
σ ≈ 0.4 µV. The threshold is then defined as 10 times the standard deviation:

Vthreshold[i = 0] = 10σ (A.4)

Step 2 consist in estimating the critical current. To be precise, the algorithm distin-
guish between switching and retrapping according to the sign of the sweep rate. If the
magnitude of the bias current is increasing, then the switching current is estimated. If
the bias current is decreasing in amplitude then the retrapping current is estimated. The
critical current is defined in the following way:

Ic[i] = max (Ibias) such that: V ((Ibias)) < Vthreshold[i− 1] (A.5)

In other words, the highest amount of current that can flow through the device without
developing a voltage greater than the threshold is the critical current. While in principle

4If not, one needs to subtract the offset of the voltage measurement (e.g., arising from thermal drift of
the preamplifier) of the voltage measurement
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the algorithm could stop here, since an estimate of the critical current is found, this is
not the case, as some inherent limitations of the algorithm are present and the estimate
must be self-consistent.

Step 3 takes into account these limitations. The rule number zero for the algorithm
is to determine a zero critical current for a linear V − I trace. From this statement it
is possible to determine an inherent limit: the threshold method cannot be applied to
values of current below a certain threshold Ithreshold because in principle no distinctions
are present between Ohmic traces and V − I curves with Ic < Ithreshold. This is sketched
in Fig. A.4, where an Ohmic trace V = RI displays V < Vthreshold for I < Ithreshold.

Figure A.4: Ohmic trace display-
ing that up to step 2 a finite crit-
ical current of Ic = R/Vthreshold is
attributed, which is not physical.

In this case the current threshold is defined as:

Ithreshold =
Vthreshold

R
(A.6)

This is a first rough estimate that does not take
into account the shape of the transition or the pres-
ence of excess current at low bias, which directly
increase the current threshold. For typical resis-
tances of 1.5 kΩ and voltage thresholds of 5 µV this
sets a fundamental limit to the algorithm (depend-
ing on devices, parameters, ..) around 3 nA. To
make the estimate self consistent, the critical cur-
rent must satisfy the following condition:

Ic[i] > 2Ithreshold (A.7)

If it does not satisfy this condition, then the step 2 is repeated with Vthreshold[i + 1] =
0.95Vthreshold[i], until self consistency is obtained.

In Step 4 the uncertainty in the critical current is estimated. Given another V − I
curve measured under the same conditions, the critical current values should be consis-
tent within the given uncertainty. The uncertainty is calculated as follows: at the most
basic level, there is the contribution from the resolution of the current sweep, δIbias.
Next, the dependence of the critical current on the chosen voltage threshold is assessed.
For a perfect step-like transition, changing the threshold by a small amount, δVthreshold

does not affect the estimated Ic. For a rounded transition, changing the threshold results
in a change in the estimated critical current proportional to the differential resistance
near the estimated Ic:

δIc1 = δVthreshold/(∂V/∂I|Ic)
The smoother and rounder the transition, the greater the dependency on the chosen
threshold. Since typically hundreds of V − I are taken for each measurement, the
standard deviation in the voltage threshold values is taken as δVthreshold. An additional
δIc2 = 10%Ic contribution, probably overestimated, is added due to the fact that only
one V − I curve per parameter value is measured, not allowing to perform averaging of
voltage values. While for low Ic values this is less relevant, for high Ic curves the prema-
ture switching events, due to thermal but also relevant contributions from the noise in
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Figure A.5: Flow diagram for the threshold algorithm used

the setup, limit the accuracy of the critical current measurement. The three components
obtained in this way are combined by summing the squares:

∆Ic =
√
δI2bias + δI2c1 + δI2c2 (A.8)

The flow diagram representing the algorithm is displayed in Fig. A.5, while two exam-
ple are displayed in Fig. A.6 and Fig. A.7 for the asymmetric and symmetric SQUID,
respectively.

It has to be highlighted that the difficulty in estimating the critical current does not
consist in determining the value of the sharpest transitions, but in using only one con-
sistent method for the different types of transitions involved, from a situation Ic > Ith
to Ic ≃ Ith to Ic < Ith. The comparisons reported in Fig. A.6 and Fig. A.7 are satis-
factory and capture the features shown in the differential resistance color-maps. These
comparisons are made with the differential resistance, and not with a color-map based
on the voltage, for the following reason: the acquisition of one SQUID interference pat-
tern takes several hours, and the preamplifiers, which amplify the SQUID voltage, show
significant thermal drift, causing different voltage offsets for each curve. Numerical dif-
ferentiation along the bias direction on each V − I curve nullifies the effect of thermal
drift, allowing for a more precise comparison of the switching current between V − I
curves at different magnetic fields.
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Figure A.6: In the top left and bottom left images, two V − I curves for the asymmetric
SQUID with the values of the switching currents are shown. The shaded vertical bars
represent the uncertainty. In the right image, the differential resistance color-map is
plotted with superimposed both the switching (light green) and retrapping (dark green)
current values.

Figure A.7: In the top left and bottom left images, two V − I curves for the symmetric
SQUID with the values of the switching currents are shown. The shaded vertical bars
represent the uncertainty. The values obtained for the V − I curve in the SQUID min-
ima are compatible with zero. In the right image, the differential resistance color-map
with superimposed both the switching (light green) and retrapping (dark green) current
values is plotted.
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B

RecursiveGreen’s functionmethod

tocomputethe Josephson supercur-

rent

Tight-binding modelization of InSb nanoflags

To describe the InSb nanoflag we consider a two-bands tight-binding model on the
square lattice [126]. The k-space Bloch Hamiltonian is given by

H(k) = {(4t− µ)− 2t[cos(kx) + cos(ky)]}σ0 − 2ER sin(ky)σx +2ER sin(kx)σy + EBσz,
(B.1)

where σ0 is the 2 × 2 identity matrix, and σi, i = x, y, z are the Pauli matrices acting
on the spin degree of freedom. Here t = ℏ2

2m∗a2
parametrizes the first neighbor hopping,

with a the spacing assumed in the lattice discretization and m∗ the electron effective
mass. Moreover, EB and ER are energy scales associated to the magnetic field and to the
Rashba spin-orbit coupling. They are defined as

EB =
1

2
gµBB, (B.2)

ER =
αR

2a
. (B.3)

with g the giromagnetic factor, µB the Bohr magneton and αR the Rashba coupling.
The real space Hamiltonian is obtained by Fourier transforming the one in Eq. (B.1),

which yields

H =
∑
ℓ,j

Ψ†
ℓ,jH0Ψℓ,j + (Ψ†

ℓ,j+1VyΨℓ,j + h.c.) + (Ψ†
ℓ+1,jVxΨℓ,j + h.c.), (B.4)

where the spinor ΨT
ℓ,j = (c↑ℓ,j, c↑ℓ,j) collects the operators c↑ℓ,j and c↓ℓ,j destroying an

electron with spin up and down respectively at the site indexed by (ℓ, j), and

H0 = (4t− µ)σ0 +
1

2
gµBBσz, (B.5)

Vx = −tσ0 + iERσy, (B.6)
Vy = −tσ0 − iERσx. (B.7)
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Parameter Value
m∗ 0.014me

g −50
αR 50meVnm
a 10nm

Table B.1: Numerical values of the model parameters used in the simulations for the InSb
nanoflag.

W

L
x

y

z

SC SCN

Figure B.1: Scheme of a planar Josephson junction, overlaying the discretized square
lattice and laying on the x − y plane. The normal region is colored in green, while the
superconducting leads are in blue.

The orbital effects of the magnetic field are included via Peierls substitution of the hop-
ping elements. We take the vector potential in the Landau gauge A = (−By, 0, 0) and
replace

Ψ†
ℓ+1,jVxΨℓ,j 7→ Ψ†

ℓ+1,jVxe
−i eℏB(ja−y0)aΨℓ,j, (B.8)

in the real-space tight-binding Hamiltonian of Eq. (B.4), with y0 an offset depending on
the position of the junction with respect to the origin of the coordinate system. The
values adopted for the parameters to match InSb [127] are reported in Tab. B.1.

Simulation of a single Josephson junction

We consider a planar Josephson junction, laying on the x − y plane and extend-
ing along the x-direction, with the left and right lead obtained by proximitizing the
InSb nanoflag with a conventional s-wave superconductor. We denote by L the junction
length, and by W its width, placing the origin of coordinates at the bottom left corner
of the scattering region. The junction is schematically represented in Fig. B.1.
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The setup is described by the Bogoliubov-de-Gennes Hamiltonian

HBdG =

(
H(x) ∆(x)I
∆∗(x)I −T H(x)T −1

)
(B.9)

where T = −iσyK is the operator implementing time-reversal symmetry and

∆(x) =


∆ x < 0

0 0 ≤ x ≤ L

∆eiϕ x > L,

, (B.10)

∆ the induced superconducting gap. The x-dependence in H is associated to the mag-
netic fieldB, which is assumed homogeneous in the normal region and zero in the leads,
and to the presence of potential barriers of strength U on the first and last column of
sites in the normal region. These are added to tune the transparency at the NS interface,
which according to the Blonder-Tinkham-Klapwijk (BTK) model [31] is defined as

τ =
1

1 + Z2
, (B.11)

with Z = m∗Ua
ℏ2kF

a pure number parametrizing the barrier strength. If we assume a

parabolic dispersion of the bands (which is indeed the case at low energy) and µ =
ℏ2k2F
2m∗ ,

then we have Z =
√

m∗

2µ
Ua
ℏ .

Having defined the tight-binding Hamiltonian of both the leads and the scattering re-
gion, the equilibrium Josephson supercurrent is computed through the recursive Green’s
function approach [128, 129]. Concerning the surface Green’s functions of the semi-
infinite uncoupled leads, these are computed via the infinite recursive Green’s function
method [130].

Simulation of the SQUID setup

We model the SQUID setup as shown in Fig. B.2, with the two junctions of width
W1 and W2 parallel to each other and of the same length L. We denote the separation
between the two junctions by d.

In order to compute the Josephson supercurrent in the SQUID configuration we re-
sort to the following approximation: we assume that if the two junctions are separated
by a distance much larger than the coherence length of the superconductor (d ≫ ξ),
then they can be assumed to be effectively decoupled. Thus, we actually compute the
supercurrent of two independent JJs having the same superconducting order parameter,
as shown in in Fig. B.3. The y-dependence in the Peierls substitution, fully accounts
for the spatial separation between the junctions, correctly yielding the expected inter-
ference pattern. The effective area of the SQUID pierced by the magnetic flux is then
defined as ASQUID = L

(
d+ W1+W2

2

)
.
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Figure B.2: Scheme of the Josephson junction, overlaying the discretized square lattice.
The normal region is colored in green, while the superconducting leads are in blue.
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Figure B.3: Scheme of the Josephson junction, overlaying the discretized square lattice.
The normal region is colored in green, while the superconducting leads are in blue.
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